Metamath Proof Explorer


Theorem prnz

Description: A pair containing a set is not empty. (Contributed by NM, 9-Apr-1994)

Ref Expression
Hypothesis prnz.1 AV
Assertion prnz AB

Proof

Step Hyp Ref Expression
1 prnz.1 AV
2 1 prid1 AAB
3 2 ne0ii AB