Metamath Proof Explorer


Theorem pwundif

Description: Break up the power class of a union into a union of smaller classes. (Contributed by NM, 25-Mar-2007) (Proof shortened by Thierry Arnoux, 20-Dec-2016) Remove use of ax-sep , ax-nul , ax-pr and shorten proof. (Revised by BJ, 14-Apr-2024)

Ref Expression
Assertion pwundif 𝒫AB=𝒫AB𝒫A𝒫A

Proof

Step Hyp Ref Expression
1 ssun1 AAB
2 1 sspwi 𝒫A𝒫AB
3 undif 𝒫A𝒫AB𝒫A𝒫AB𝒫A=𝒫AB
4 2 3 mpbi 𝒫A𝒫AB𝒫A=𝒫AB
5 uncom 𝒫A𝒫AB𝒫A=𝒫AB𝒫A𝒫A
6 4 5 eqtr3i 𝒫AB=𝒫AB𝒫A𝒫A