Metamath Proof Explorer


Theorem qus0subgbas

Description: The base set of a quotient of a group by the trivial (zero) subgroup. (Contributed by AV, 26-Feb-2025)

Ref Expression
Hypotheses qus0subg.0 0˙=0G
qus0subg.s S=0˙
qus0subg.e ˙=G~QGS
qus0subg.u U=G/𝑠˙
qus0subg.b B=BaseG
Assertion qus0subgbas GGrpBaseU=u|xBu=x

Proof

Step Hyp Ref Expression
1 qus0subg.0 0˙=0G
2 qus0subg.s S=0˙
3 qus0subg.e ˙=G~QGS
4 qus0subg.u U=G/𝑠˙
5 qus0subg.b B=BaseG
6 df-qs B/˙=u|xBu=x˙
7 4 a1i GGrpU=G/𝑠˙
8 5 a1i GGrpB=BaseG
9 3 ovexi ˙V
10 9 a1i GGrp˙V
11 id GGrpGGrp
12 7 8 10 11 qusbas GGrpB/˙=BaseU
13 1 2 5 3 eqg0subgecsn GGrpxBx˙=x
14 13 eqeq2d GGrpxBu=x˙u=x
15 14 rexbidva GGrpxBu=x˙xBu=x
16 15 abbidv GGrpu|xBu=x˙=u|xBu=x
17 6 12 16 3eqtr3a GGrpBaseU=u|xBu=x