Metamath Proof Explorer


Theorem r19.12sn

Description: Special case of r19.12 where its converse holds. (Contributed by NM, 19-May-2008) (Revised by Mario Carneiro, 23-Apr-2015) (Revised by BJ, 18-Mar-2020)

Ref Expression
Assertion r19.12sn AVxAyBφyBxAφ

Proof

Step Hyp Ref Expression
1 sbcralg AV[˙A/x]˙yBφyB[˙A/x]˙φ
2 rexsns xAyBφ[˙A/x]˙yBφ
3 rexsns xAφ[˙A/x]˙φ
4 3 ralbii yBxAφyB[˙A/x]˙φ
5 1 2 4 3bitr4g AVxAyBφyBxAφ