Metamath Proof Explorer


Theorem r19.29

Description: Restricted quantifier version of 19.29 . See also r19.29r . (Contributed by NM, 31-Aug-1999) (Proof shortened by Andrew Salmon, 30-May-2011)

Ref Expression
Assertion r19.29 x A φ x A ψ x A φ ψ

Proof

Step Hyp Ref Expression
1 pm3.2 φ ψ φ ψ
2 1 ralimi x A φ x A ψ φ ψ
3 rexim x A ψ φ ψ x A ψ x A φ ψ
4 2 3 syl x A φ x A ψ x A φ ψ
5 4 imp x A φ x A ψ x A φ ψ