Metamath Proof Explorer


Theorem r19.29

Description: Restricted quantifier version of 19.29 . See also r19.29r . (Contributed by NM, 31-Aug-1999) (Proof shortened by Andrew Salmon, 30-May-2011) (Proof shortened by Wolf Lammen, 22-Dec-2024)

Ref Expression
Assertion r19.29 xAφxAψxAφψ

Proof

Step Hyp Ref Expression
1 ibar φψφψ
2 1 ralrexbid xAφxAψxAφψ
3 2 biimpa xAφxAψxAφψ