Metamath Proof Explorer


Theorem r19.29vva

Description: A commonly used pattern based on r19.29 , version with two restricted quantifiers. (Contributed by Thierry Arnoux, 26-Nov-2017) (Proof shortened by Wolf Lammen, 4-Nov-2024)

Ref Expression
Hypotheses r19.29vva.1 φxAyBψχ
r19.29vva.2 φxAyBψ
Assertion r19.29vva φχ

Proof

Step Hyp Ref Expression
1 r19.29vva.1 φxAyBψχ
2 r19.29vva.2 φxAyBψ
3 1 2 reximddv2 φxAyBχ
4 idd xAyBχχ
5 4 rexlimivv xAyBχχ
6 3 5 syl φχ