Metamath Proof Explorer


Theorem r1funlim

Description: The cumulative hierarchy of sets function is a function on a limit ordinal. (This weak form of r1fnon avoids ax-rep .) (Contributed by Mario Carneiro, 16-Nov-2014)

Ref Expression
Assertion r1funlim FunR1LimdomR1

Proof

Step Hyp Ref Expression
1 rdgfun FunrecxV𝒫x
2 df-r1 R1=recxV𝒫x
3 2 funeqi FunR1FunrecxV𝒫x
4 1 3 mpbir FunR1
5 rdgdmlim LimdomrecxV𝒫x
6 2 dmeqi domR1=domrecxV𝒫x
7 limeq domR1=domrecxV𝒫xLimdomR1LimdomrecxV𝒫x
8 6 7 ax-mp LimdomR1LimdomrecxV𝒫x
9 5 8 mpbir LimdomR1
10 4 9 pm3.2i FunR1LimdomR1