Metamath Proof Explorer


Theorem rabexf

Description: Separation Scheme in terms of a restricted class abstraction. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses rabexf.1 _xA
rabexf.2 AV
Assertion rabexf xA|φV

Proof

Step Hyp Ref Expression
1 rabexf.1 _xA
2 rabexf.2 AV
3 1 rabexgf AVxA|φV
4 2 3 ax-mp xA|φV