Metamath Proof Explorer


Theorem ralbi

Description: Distribute a restricted universal quantifier over a biconditional. Restricted quantification version of albi . (Contributed by NM, 6-Oct-2003) Reduce axiom usage. (Revised by Wolf Lammen, 17-Jun-2023)

Ref Expression
Assertion ralbi xAφψxAφxAψ

Proof

Step Hyp Ref Expression
1 biimp φψφψ
2 1 ral2imi xAφψxAφxAψ
3 biimpr φψψφ
4 3 ral2imi xAφψxAψxAφ
5 2 4 impbid xAφψxAφxAψ