Metamath Proof Explorer


Theorem ralimi2

Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 22-Feb-2004)

Ref Expression
Hypothesis ralimi2.1 xAφxBψ
Assertion ralimi2 xAφxBψ

Proof

Step Hyp Ref Expression
1 ralimi2.1 xAφxBψ
2 1 alimi xxAφxxBψ
3 df-ral xAφxxAφ
4 df-ral xBψxxBψ
5 2 3 4 3imtr4i xAφxBψ