Metamath Proof Explorer


Theorem rankr1

Description: A relationship between the rank function and the cumulative hierarchy of sets function R1 . Proposition 9.15(2) of TakeutiZaring p. 79. (Contributed by NM, 6-Oct-2003) (Proof shortened by Mario Carneiro, 17-Nov-2014)

Ref Expression
Hypothesis rankid.1 AV
Assertion rankr1 B=rankA¬AR1BAR1sucB

Proof

Step Hyp Ref Expression
1 rankid.1 AV
2 rankr1g AVB=rankA¬AR1BAR1sucB
3 1 2 ax-mp B=rankA¬AR1BAR1sucB