Metamath Proof Explorer


Theorem reu0

Description: Vacuous restricted uniqueness is always false. (Contributed by AV, 3-Apr-2023)

Ref Expression
Assertion reu0 ¬∃!xφ

Proof

Step Hyp Ref Expression
1 rex0 ¬xφ
2 reurex ∃!xφxφ
3 1 2 mto ¬∃!xφ