Metamath Proof Explorer


Theorem rev0

Description: The empty word is its own reverse. (Contributed by Stefan O'Rear, 26-Aug-2015)

Ref Expression
Assertion rev0 reverse=

Proof

Step Hyp Ref Expression
1 wrd0 WordV
2 revlen WordVreverse=
3 1 2 ax-mp reverse=
4 hash0 =0
5 3 4 eqtri reverse=0
6 fvex reverseV
7 hasheq0 reverseVreverse=0reverse=
8 6 7 ax-mp reverse=0reverse=
9 5 8 mpbi reverse=