Metamath Proof Explorer


Theorem rexprgOLD

Description: Obsolete version of rexprg as of 30-Sep-2024. (Contributed by NM, 17-Sep-2011) (Revised by Mario Carneiro, 23-Apr-2015) (Proof shortened by AV, 8-Apr-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ralprg.1 x=Aφψ
ralprg.2 x=Bφχ
Assertion rexprgOLD AVBWxABφψχ

Proof

Step Hyp Ref Expression
1 ralprg.1 x=Aφψ
2 ralprg.2 x=Bφχ
3 nfv xψ
4 nfv xχ
5 3 4 1 2 rexprgf AVBWxABφψχ