Metamath Proof Explorer


Theorem rexsn

Description: Convert an existential quantification restricted to a singleton to a substitution. (Contributed by Jeff Madsen, 5-Jan-2011)

Ref Expression
Hypotheses ralsn.1 AV
ralsn.2 x=Aφψ
Assertion rexsn xAφψ

Proof

Step Hyp Ref Expression
1 ralsn.1 AV
2 ralsn.2 x=Aφψ
3 2 rexsng AVxAφψ
4 1 3 ax-mp xAφψ