Metamath Proof Explorer


Theorem rngacl

Description: Closure of the addition operation of a non-unital ring. (Contributed by AV, 16-Feb-2025)

Ref Expression
Hypotheses rngacl.b B=BaseR
rngacl.p +˙=+R
Assertion rngacl RRngXBYBX+˙YB

Proof

Step Hyp Ref Expression
1 rngacl.b B=BaseR
2 rngacl.p +˙=+R
3 rnggrp RRngRGrp
4 1 2 grpcl RGrpXBYBX+˙YB
5 3 4 syl3an1 RRngXBYBX+˙YB