Metamath Proof Explorer


Theorem rnghmghm

Description: A non-unital ring homomorphism is an additive group homomorphism. (Contributed by AV, 23-Feb-2020)

Ref Expression
Assertion rnghmghm FRRngHomoSFRGrpHomS

Proof

Step Hyp Ref Expression
1 eqid BaseR=BaseR
2 eqid R=R
3 eqid S=S
4 1 2 3 isrnghm FRRngHomoSRRngSRngFRGrpHomSxBaseRyBaseRFxRy=FxSFy
5 simprl RRngSRngFRGrpHomSxBaseRyBaseRFxRy=FxSFyFRGrpHomS
6 4 5 sylbi FRRngHomoSFRGrpHomS