Metamath Proof Explorer


Theorem rnmptssd

Description: The range of a function given by the maps-to notation as a subset. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses rnmptssd.1 xφ
rnmptssd.2 F=xAB
rnmptssd.3 φxABC
Assertion rnmptssd φranFC

Proof

Step Hyp Ref Expression
1 rnmptssd.1 xφ
2 rnmptssd.2 F=xAB
3 rnmptssd.3 φxABC
4 1 3 ralrimia φxABC
5 2 rnmptss xABCranFC
6 4 5 syl φranFC