Database
BASIC TOPOLOGY
Metric subcomplex vector spaces
Euclidean spaces
rrxsuppss
Next ⟩
rrxmvallem
Metamath Proof Explorer
Ascii
Unicode
Theorem
rrxsuppss
Description:
Support of Euclidean vectors.
(Contributed by
Thierry Arnoux
, 7-Jul-2019)
Ref
Expression
Hypotheses
rrxmval.1
⊢
X
=
h
∈
ℝ
I
|
finSupp
0
⁡
h
rrxf.1
⊢
φ
→
F
∈
X
Assertion
rrxsuppss
⊢
φ
→
F
supp
0
⊆
I
Proof
Step
Hyp
Ref
Expression
1
rrxmval.1
⊢
X
=
h
∈
ℝ
I
|
finSupp
0
⁡
h
2
rrxf.1
⊢
φ
→
F
∈
X
3
suppssdm
⊢
F
supp
0
⊆
dom
⁡
F
4
1
2
rrxf
⊢
φ
→
F
:
I
⟶
ℝ
5
3
4
fssdm
⊢
φ
→
F
supp
0
⊆
I