Metamath Proof Explorer


Theorem rspcdf

Description: Restricted specialization, using implicit substitution. (Contributed by Emmett Weisz, 16-Jan-2020)

Ref Expression
Hypotheses rspcdf.1 xφ
rspcdf.2 xχ
rspcdf.3 φAB
rspcdf.4 φx=Aψχ
Assertion rspcdf φxBψχ

Proof

Step Hyp Ref Expression
1 rspcdf.1 xφ
2 rspcdf.2 xχ
3 rspcdf.3 φAB
4 rspcdf.4 φx=Aψχ
5 4 ex φx=Aψχ
6 1 5 alrimi φxx=Aψχ
7 2 rspct xx=AψχABxBψχ
8 6 3 7 sylc φxBψχ