Metamath Proof Explorer


Theorem rspceaimv

Description: Restricted existential specialization of a universally quantified implication. (Contributed by BJ, 24-Aug-2022)

Ref Expression
Hypothesis rspceaimv.1 x=Aφψ
Assertion rspceaimv AByCψχxByCφχ

Proof

Step Hyp Ref Expression
1 rspceaimv.1 x=Aφψ
2 1 imbi1d x=Aφχψχ
3 2 ralbidv x=AyCφχyCψχ
4 3 rspcev AByCψχxByCφχ