Metamath Proof Explorer


Theorem s1eqd

Description: Equality theorem for a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016)

Ref Expression
Hypothesis s1eqd.1 φA=B
Assertion s1eqd φ⟨“A”⟩=⟨“B”⟩

Proof

Step Hyp Ref Expression
1 s1eqd.1 φA=B
2 s1eq A=B⟨“A”⟩=⟨“B”⟩
3 1 2 syl φ⟨“A”⟩=⟨“B”⟩