Metamath Proof Explorer


Theorem sbbidv

Description: Deduction substituting both sides of a biconditional, with ph and x disjoint. See also sbbid . (Contributed by Wolf Lammen, 6-May-2023) (Proof shortened by Steven Nguyen, 6-Jul-2023)

Ref Expression
Hypothesis sbbidv.1 φψχ
Assertion sbbidv φtxψtxχ

Proof

Step Hyp Ref Expression
1 sbbidv.1 φψχ
2 1 alrimiv φxψχ
3 spsbbi xψχtxψtxχ
4 2 3 syl φtxψtxχ