Metamath Proof Explorer


Theorem sbcbidvOLD

Description: Obsolete version of sbcbidv as of 1-Dec-2023. (Contributed by NM, 29-Dec-2014) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis sbcbidv.1 φ ψ χ
Assertion sbcbidvOLD φ [˙A / x]˙ ψ [˙A / x]˙ χ

Proof

Step Hyp Ref Expression
1 sbcbidv.1 φ ψ χ
2 nfv x φ
3 2 1 sbcbid φ [˙A / x]˙ ψ [˙A / x]˙ χ