Description: By our definition of proper substitution, it can only be true if the substituted expression is a set. (Contributed by Mario Carneiro, 13-Oct-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | sbcex | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sbc | |
|
2 | elex | |
|
3 | 1 2 | sylbi | |