Metamath Proof Explorer


Theorem sbcex

Description: By our definition of proper substitution, it can only be true if the substituted expression is a set. (Contributed by Mario Carneiro, 13-Oct-2016)

Ref Expression
Assertion sbcex [˙A/x]˙φAV

Proof

Step Hyp Ref Expression
1 df-sbc [˙A/x]˙φAx|φ
2 elex Ax|φAV
3 1 2 sylbi [˙A/x]˙φAV