Metamath Proof Explorer


Theorem sbequ

Description: Equality property for substitution, from Tarski's system. Used in proof of Theorem 9.7 in Megill p. 449 (p. 16 of the preprint). (Contributed by NM, 14-May-1993) Revise df-sb . (Revised by BJ, 30-Dec-2020)

Ref Expression
Assertion sbequ x=yxzφyzφ

Proof

Step Hyp Ref Expression
1 equequ2 x=yu=xu=y
2 1 imbi1d x=yu=xzz=uφu=yzz=uφ
3 2 albidv x=yuu=xzz=uφuu=yzz=uφ
4 df-sb xzφuu=xzz=uφ
5 df-sb yzφuu=yzz=uφ
6 3 4 5 3bitr4g x=yxzφyzφ