Database COMPLEX HILBERT SPACE EXPLORER (DEPRECATED) Subspaces and projections Subspace sum, span, lattice join, lattice supremum shlej1i  
				
		 
		
			
		 
		Description:   Add disjunct to both sides of Hilbert subspace ordering.  (Contributed by NM , 19-Oct-1999)   (Revised by Mario Carneiro , 15-May-2014) 
       (New usage is discouraged.) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						shincl.1   ⊢   A  ∈  S  ℋ      
					 
					
						shincl.2   ⊢   B  ∈  S  ℋ      
					 
					
						shless.1   ⊢   C  ∈  S  ℋ      
					 
				
					Assertion 
					shlej1i    ⊢   A  ⊆  B    →   A  ∨  ℋ C ⊆  B  ∨  ℋ C        
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							shincl.1  ⊢   A  ∈  S  ℋ      
						
							2 
								
							 
							shincl.2  ⊢   B  ∈  S  ℋ      
						
							3 
								
							 
							shless.1  ⊢   C  ∈  S  ℋ      
						
							4 
								
							 
							shlej1   ⊢     A  ∈  S  ℋ   ∧   B  ∈  S  ℋ   ∧   C  ∈  S  ℋ    ∧   A  ⊆  B     →   A  ∨  ℋ C ⊆  B  ∨  ℋ C        
						
							5 
								4 
							 
							ex   ⊢    A  ∈  S  ℋ   ∧   B  ∈  S  ℋ   ∧   C  ∈  S  ℋ    →    A  ⊆  B    →   A  ∨  ℋ C ⊆  B  ∨  ℋ C         
						
							6 
								1  2  3  5 
							 
							mp3an   ⊢   A  ⊆  B    →   A  ∨  ℋ C ⊆  B  ∨  ℋ C