Metamath Proof Explorer


Theorem snec

Description: The singleton of an equivalence class. (Contributed by NM, 29-Jan-1999) (Revised by Mario Carneiro, 9-Jul-2014)

Ref Expression
Hypothesis snec.1 AV
Assertion snec AR=A/R

Proof

Step Hyp Ref Expression
1 snec.1 AV
2 eceq1 x=AxR=AR
3 2 eqeq2d x=Ay=xRy=AR
4 1 3 rexsn xAy=xRy=AR
5 4 abbii y|xAy=xR=y|y=AR
6 df-qs A/R=y|xAy=xR
7 df-sn AR=y|y=AR
8 5 6 7 3eqtr4ri AR=A/R