Metamath Proof Explorer


Theorem spcgf

Description: Rule of specialization, using implicit substitution. Compare Theorem 7.3 of Quine p. 44. (Contributed by NM, 2-Feb-1997) (Revised by Andrew Salmon, 12-Aug-2011)

Ref Expression
Hypotheses spcgf.1 _xA
spcgf.2 xψ
spcgf.3 x=Aφψ
Assertion spcgf AVxφψ

Proof

Step Hyp Ref Expression
1 spcgf.1 _xA
2 spcgf.2 xψ
3 spcgf.3 x=Aφψ
4 2 1 spcgft xx=AφψAVxφψ
5 4 3 mpg AVxφψ