Metamath Proof Explorer


Theorem spsbcd

Description: Specialization: if a formula is true for all sets, it is true for any class which is a set. Similar to Theorem 6.11 of Quine p. 44. See also stdpc4 and rspsbc . (Contributed by Mario Carneiro, 9-Feb-2017)

Ref Expression
Hypotheses spsbcd.1 φAV
spsbcd.2 φxψ
Assertion spsbcd φ[˙A/x]˙ψ

Proof

Step Hyp Ref Expression
1 spsbcd.1 φAV
2 spsbcd.2 φxψ
3 spsbc AVxψ[˙A/x]˙ψ
4 1 2 3 sylc φ[˙A/x]˙ψ