Metamath Proof Explorer


Theorem spthsfval

Description: The set of simple paths (in an undirected graph). (Contributed by Alexander van der Vekens, 21-Oct-2017) (Revised by AV, 9-Jan-2021) (Revised by AV, 29-Oct-2021)

Ref Expression
Assertion spthsfval SPathsG=fp|fTrailsGpFunp-1

Proof

Step Hyp Ref Expression
1 biidd g=GFunp-1Funp-1
2 df-spths SPaths=gVfp|fTrailsgpFunp-1
3 1 2 fvmptopab SPathsG=fp|fTrailsGpFunp-1