Metamath Proof Explorer


Theorem srngbase

Description: The base set of a constructed star ring. (Contributed by Mario Carneiro, 18-Nov-2013) (Revised by Mario Carneiro, 6-May-2015)

Ref Expression
Hypothesis srngstr.r R=BasendxB+ndx+˙ndx·˙*ndx˙
Assertion srngbase BXB=BaseR

Proof

Step Hyp Ref Expression
1 srngstr.r R=BasendxB+ndx+˙ndx·˙*ndx˙
2 1 srngstr RStruct14
3 baseid Base=SlotBasendx
4 snsstp1 BasendxBBasendxB+ndx+˙ndx·˙
5 ssun1 BasendxB+ndx+˙ndx·˙BasendxB+ndx+˙ndx·˙*ndx˙
6 5 1 sseqtrri BasendxB+ndx+˙ndx·˙R
7 4 6 sstri BasendxBR
8 2 3 7 strfv BXB=BaseR