Metamath Proof Explorer


Theorem srnginvl

Description: The involution function of a constructed star ring. (Contributed by Mario Carneiro, 20-Jun-2015)

Ref Expression
Hypothesis srngstr.r R=BasendxB+ndx+˙ndx·˙*ndx˙
Assertion srnginvl ˙X˙=*R

Proof

Step Hyp Ref Expression
1 srngstr.r R=BasendxB+ndx+˙ndx·˙*ndx˙
2 1 srngstr RStruct14
3 starvid 𝑟=Slot*ndx
4 ssun2 *ndx˙BasendxB+ndx+˙ndx·˙*ndx˙
5 4 1 sseqtrri *ndx˙R
6 2 3 5 strfv ˙X˙=*R