Metamath Proof Explorer


Theorem srngmulr

Description: The multiplication operation of a constructed star ring. (Contributed by Mario Carneiro, 20-Jun-2015)

Ref Expression
Hypothesis srngstr.r R=BasendxB+ndx+˙ndx·˙*ndx˙
Assertion srngmulr ·˙X·˙=R

Proof

Step Hyp Ref Expression
1 srngstr.r R=BasendxB+ndx+˙ndx·˙*ndx˙
2 1 srngstr RStruct14
3 mulridx 𝑟=Slotndx
4 snsstp3 ndx·˙BasendxB+ndx+˙ndx·˙
5 ssun1 BasendxB+ndx+˙ndx·˙BasendxB+ndx+˙ndx·˙*ndx˙
6 5 1 sseqtrri BasendxB+ndx+˙ndx·˙R
7 4 6 sstri ndx·˙R
8 2 3 7 strfv ·˙X·˙=R