Metamath Proof Explorer


Theorem syl6eqr

Description: An equality transitivity deduction. (Contributed by NM, 21-Jun-1993)

Ref Expression
Hypotheses syl6eqr.1 φ A = B
syl6eqr.2 C = B
Assertion syl6eqr φ A = C

Proof

Step Hyp Ref Expression
1 syl6eqr.1 φ A = B
2 syl6eqr.2 C = B
3 2 eqcomi B = C
4 1 3 syl6eq φ A = C