Metamath Proof Explorer


Theorem symdifcom

Description: Symmetric difference commutes. (Contributed by Scott Fenton, 24-Apr-2012)

Ref Expression
Assertion symdifcom AB=BA

Proof

Step Hyp Ref Expression
1 uncom ABBA=BAAB
2 df-symdif AB=ABBA
3 df-symdif BA=BAAB
4 1 2 3 3eqtr4i AB=BA