Metamath Proof Explorer
Table of Contents - 20.6. Mathbox for Mario Carneiro
- Predicate calculus with all distinct variables
- ax-7d
- ax-8d
- ax-9d1
- ax-9d2
- ax-10d
- ax-11d
- Miscellaneous stuff
- quartfull
- Derangements and the Subfactorial
- deranglem
- derangval
- derangf
- derang0
- derangsn
- derangenlem
- derangen
- subfacval
- derangen2
- subfacf
- subfaclefac
- subfac0
- subfac1
- subfacp1lem1
- subfacp1lem2a
- subfacp1lem2b
- subfacp1lem3
- subfacp1lem4
- subfacp1lem5
- subfacp1lem6
- subfacp1
- subfacval2
- subfaclim
- subfacval3
- derangfmla
- The Erdős-Szekeres theorem
- erdszelem1
- erdszelem2
- erdszelem3
- erdszelem4
- erdszelem5
- erdszelem6
- erdszelem7
- erdszelem8
- erdszelem9
- erdszelem10
- erdszelem11
- erdsze
- erdsze2lem1
- erdsze2lem2
- erdsze2
- Euler's partition theorem
- The Kuratowski closure-complement theorem
- kur14lem1
- kur14lem2
- kur14lem3
- kur14lem4
- kur14lem5
- kur14lem6
- kur14lem7
- kur14lem8
- kur14lem9
- kur14lem10
- kur14
- Retracts and sections
- cretr
- df-retr
- Path-connected and simply connected spaces
- cpconn
- csconn
- df-pconn
- df-sconn
- ispconn
- pconncn
- pconntop
- issconn
- sconnpconn
- sconntop
- sconnpht
- cnpconn
- pconnconn
- txpconn
- ptpconn
- indispconn
- connpconn
- qtoppconn
- pconnpi1
- sconnpht2
- sconnpi1
- txsconnlem
- txsconn
- cvxpconn
- cvxsconn
- blsconn
- cnllysconn
- resconn
- ioosconn
- iccsconn
- retopsconn
- iccllysconn
- rellysconn
- iisconn
- iillysconn
- iinllyconn
- Covering maps
- ccvm
- df-cvm
- fncvm
- cvmscbv
- iscvm
- cvmtop1
- cvmtop2
- cvmcn
- cvmcov
- cvmsrcl
- cvmsi
- cvmsval
- cvmsss
- cvmsn0
- cvmsuni
- cvmsdisj
- cvmshmeo
- cvmsf1o
- cvmscld
- cvmsss2
- cvmcov2
- cvmseu
- cvmsiota
- cvmopnlem
- cvmfolem
- cvmopn
- cvmliftmolem1
- cvmliftmolem2
- cvmliftmoi
- cvmliftmo
- cvmliftlem1
- cvmliftlem2
- cvmliftlem3
- cvmliftlem4
- cvmliftlem5
- cvmliftlem6
- cvmliftlem7
- cvmliftlem8
- cvmliftlem9
- cvmliftlem10
- cvmliftlem11
- cvmliftlem13
- cvmliftlem14
- cvmliftlem15
- cvmlift
- cvmfo
- cvmliftiota
- cvmlift2lem1
- cvmlift2lem9a
- cvmlift2lem2
- cvmlift2lem3
- cvmlift2lem4
- cvmlift2lem5
- cvmlift2lem6
- cvmlift2lem7
- cvmlift2lem8
- cvmlift2lem9
- cvmlift2lem10
- cvmlift2lem11
- cvmlift2lem12
- cvmlift2lem13
- cvmlift2
- cvmliftphtlem
- cvmliftpht
- cvmlift3lem1
- cvmlift3lem2
- cvmlift3lem3
- cvmlift3lem4
- cvmlift3lem5
- cvmlift3lem6
- cvmlift3lem7
- cvmlift3lem8
- cvmlift3lem9
- cvmlift3
- Normal numbers
- snmlff
- snmlfval
- snmlval
- snmlflim
- Compactification
- Godel-sets of formulas - part 1
- cgoe
- cgna
- cgol
- csat
- cfmla
- csate
- cprv
- df-goel
- df-gona
- df-goal
- df-sat
- df-sate
- df-fmla
- df-prv
- goel
- goelel3xp
- goeleq12bg
- gonafv
- goaleq12d
- gonanegoal
- satf
- satfsucom
- satfn
- satom
- satfvsucom
- satfv0
- satfvsuclem1
- satfvsuclem2
- satfvsuc
- satfv1lem
- satfv1
- satfsschain
- satfvsucsuc
- satfbrsuc
- satfrel
- satfdmlem
- satfdm
- satfrnmapom
- satfv0fun
- satf0
- satf0sucom
- satf00
- satf0suclem
- satf0suc
- satf0op
- satf0n0
- sat1el2xp
- fmlafv
- fmla
- fmla0
- fmla0xp
- fmlasuc0
- fmlafvel
- fmlasuc
- fmla1
- isfmlasuc
- fmlasssuc
- fmlaomn0
- fmlan0
- gonan0
- goaln0
- gonarlem
- gonar
- goalrlem
- goalr
- fmla0disjsuc
- fmlasucdisj
- satfdmfmla
- satffunlem
- satffunlem1lem1
- satffunlem1lem2
- satffunlem2lem1
- dmopab3rexdif
- satffunlem2lem2
- satffunlem1
- satffunlem2
- satffun
- satff
- satfun
- satfvel
- satfv0fvfmla0
- satefv
- sate0
- satef
- sate0fv0
- satefvfmla0
- sategoelfvb
- sategoelfv
- ex-sategoelel
- ex-sategoel
- satfv1fvfmla1
- 2goelgoanfmla1
- satefvfmla1
- ex-sategoelelomsuc
- ex-sategoelel12
- prv
- elnanelprv
- prv0
- prv1n
- Godel-sets of formulas - part 2
- cgon
- cgoa
- cgoi
- cgoo
- cgob
- cgoq
- cgox
- df-gonot
- df-goan
- df-goim
- df-goor
- df-gobi
- df-goeq
- df-goex
- Models of ZF
- cgze
- cgzr
- cgzp
- cgzu
- cgzg
- cgzi
- cgzf
- df-gzext
- df-gzrep
- df-gzpow
- df-gzun
- df-gzreg
- df-gzinf
- df-gzf
- Metamath formal systems
- cmcn
- cmvar
- cmty
- cmvt
- cmtc
- cmax
- cmrex
- cmex
- cmdv
- cmvrs
- cmrsub
- cmsub
- cmvh
- cmpst
- cmsr
- cmsta
- cmfs
- cmcls
- cmpps
- cmthm
- df-mcn
- df-mvar
- df-mty
- df-mtc
- df-mmax
- df-mvt
- df-mrex
- df-mex
- df-mdv
- df-mvrs
- df-mrsub
- df-msub
- df-mvh
- df-mpst
- df-msr
- df-msta
- df-mfs
- df-mcls
- df-mpps
- df-mthm
- mvtval
- mrexval
- mexval
- mexval2
- mdvval
- mvrsval
- mvrsfpw
- mrsubffval
- mrsubfval
- mrsubval
- mrsubcv
- mrsubvr
- mrsubff
- mrsubrn
- mrsubff1
- mrsubff1o
- mrsub0
- mrsubf
- mrsubccat
- mrsubcn
- elmrsubrn
- mrsubco
- mrsubvrs
- msubffval
- msubfval
- msubval
- msubrsub
- msubty
- elmsubrn
- msubrn
- msubff
- msubco
- msubf
- mvhfval
- mvhval
- mpstval
- elmpst
- msrfval
- msrval
- mpstssv
- mpst123
- mpstrcl
- msrf
- msrrcl
- mstaval
- msrid
- msrfo
- mstapst
- elmsta
- ismfs
- mfsdisj
- mtyf2
- mtyf
- mvtss
- maxsta
- mvtinf
- msubff1
- msubff1o
- mvhf
- mvhf1
- msubvrs
- mclsrcl
- mclsssvlem
- mclsval
- mclsssv
- ssmclslem
- vhmcls
- ssmcls
- ss2mcls
- mclsax
- mclsind
- mppspstlem
- mppsval
- elmpps
- mppspst
- mthmval
- elmthm
- mthmi
- mthmsta
- mppsthm
- mthmblem
- mthmb
- mthmpps
- mclsppslem
- mclspps
- Grammatical formal systems
- cm0s
- cmsa
- cmwgfs
- cmsy
- cmesy
- cmgfs
- cmtree
- cmst
- cmsax
- cmufs
- df-m0s
- df-msa
- df-mwgfs
- df-msyn
- df-mesyn
- df-mgfs
- df-mtree
- df-mst
- df-msax
- df-mufs
- Models of formal systems
- cmuv
- cmvl
- cmvsb
- cmfsh
- cmfr
- cmevl
- cmdl
- cusyn
- cgmdl
- cmitp
- cmfitp
- df-muv
- df-mfsh
- df-mevl
- df-mvl
- df-mvsb
- df-mfrel
- df-mdl
- df-musyn
- df-gmdl
- df-mitp
- df-mfitp
- Splitting fields
- citr
- ccpms
- chlb
- chlim
- cpfl
- csf1
- csf
- cpsl
- df-irng
- df-cplmet
- df-homlimb
- df-homlim
- df-plfl
- df-sfl1
- df-sfl
- df-psl
- p-adic number fields
- czr
- cgf
- cgfo
- ceqp
- crqp
- cqp
- czp
- cqpa
- ccp
- df-zrng
- df-gf
- df-gfoo
- df-eqp
- df-rqp
- df-qp
- df-zp
- df-qpa
- df-cp