Metamath Proof Explorer
Table of Contents - 21.5. Mathbox for BTernaryTau
- ZF set theory
- exdifsn
- srcmpltd
- prsrcmpltd
- dff15
- f1resveqaeq
- f1resrcmplf1dlem
- f1resrcmplf1d
- funen1cnv
- fnrelpredd
- cardpred
- nummin
- Finitism
- Real and complex numbers
- zltp1ne
- nnltp1ne
- nn0ltp1ne
- 0nn0m1nnn0
- f1resfz0f1d
- fisshasheq
- hashf1dmcdm
- revpfxsfxrev
- swrdrevpfx
- Graph theory
- lfuhgr
- lfuhgr2
- lfuhgr3
- cplgredgex
- cusgredgex
- cusgredgex2
- pfxwlk
- revwlk
- revwlkb
- swrdwlk
- pthhashvtx
- pthisspthorcycl
- spthcycl
- usgrgt2cycl
- usgrcyclgt2v
- subgrwlk
- subgrtrl
- subgrpth
- subgrcycl
- cusgr3cyclex
- loop1cycl
- 2cycld
- 2cycl2d
- umgr2cycllem
- umgr2cycl
- Acyclic graphs