Metamath Proof Explorer
Table of Contents - 2.2. ZF Set Theory - add the Axiom of Replacement
- Introduce the Axiom of Replacement
- ax-rep
- axrep1
- axreplem
- axrep2
- axrep3
- axrep4
- axrep5
- axrep6
- zfrepclf
- zfrep3cl
- zfrep4
- Derive the Axiom of Separation
- axsepgfromrep
- axsep
- ax-sep
- axsepg
- zfauscl
- bm1.3ii
- ax6vsep
- Derive the Null Set Axiom
- axnulALT
- axnul
- ax-nul
- 0ex
- al0ssb
- sseliALT
- csbexg
- csbex
- unisn2
- Theorems requiring subset and intersection existence
- nalset
- vnex
- vprc
- nvel
- inex1
- inex2
- inex1g
- inex2g
- ssex
- ssexi
- ssexg
- ssexd
- prcssprc
- sselpwd
- difexg
- difexi
- difexd
- zfausab
- rabexg
- rabex
- rabexd
- rabex2
- rab2ex
- elssabg
- intex
- intnex
- intexab
- intexrab
- iinexg
- intabs
- inuni
- elpw2g
- elpw2
- elpwi2
- elpwi2OLD
- pwnss
- pwne
- difelpw
- rabelpw
- Theorems requiring empty set existence
- class2set
- class2seteq
- 0elpw
- pwne0
- 0nep0
- 0inp0
- unidif0
- eqsnuniex
- iin0
- notzfaus
- intv
- axpweq