Metamath Proof Explorer
Table of Contents - 20.16.5. Set theory
- Eliminability of class terms
- eliminable1
- eliminable2a
- eliminable2b
- eliminable2c
- eliminable3a
- eliminable3b
- eliminable-velab
- eliminable-veqab
- eliminable-abeqv
- eliminable-abeqab
- eliminable-abelv
- eliminable-abelab
- Classes without the axiom of extensionality
- bj-denoteslem
- bj-denotes
- bj-issettru
- bj-elabtru
- bj-issetwt
- bj-issetw
- bj-elissetALT
- bj-issetiv
- bj-isseti
- bj-ralvw
- bj-rexvw
- bj-rababw
- bj-rexcom4bv
- bj-rexcom4b
- bj-ceqsalt0
- bj-ceqsalt1
- bj-ceqsalt
- bj-ceqsaltv
- bj-ceqsalg0
- bj-ceqsalg
- bj-ceqsalgALT
- bj-ceqsalgv
- bj-ceqsalgvALT
- bj-ceqsal
- bj-ceqsalv
- bj-spcimdv
- bj-spcimdvv
- Characterization among sets versus among classes
- elelb
- bj-pwvrelb
- The nonfreeness quantifier for classes
- bj-nfcsym
- Lemmas for class substitution
- bj-sbeqALT
- bj-sbeq
- bj-sbceqgALT
- bj-csbsnlem
- bj-csbsn
- bj-sbel1
- bj-abv
- bj-abvALT
- bj-ab0
- bj-abf
- bj-csbprc
- Removing some axiom requirements and disjoint variable conditions
- bj-exlimvmpi
- bj-exlimmpi
- bj-exlimmpbi
- bj-exlimmpbir
- bj-vtoclf
- bj-vtocl
- bj-vtoclg1f1
- bj-vtoclg1f
- bj-vtoclg1fv
- bj-vtoclg
- bj-rabbida2
- bj-rabeqd
- bj-rabeqbid
- bj-rabeqbida
- bj-seex
- bj-nfcf
- bj-zfauscl
- Class abstractions
- bj-elabd2ALT
- bj-unrab
- bj-inrab
- bj-inrab2
- bj-inrab3
- bj-rabtr
- bj-rabtrALT
- bj-rabtrAUTO
- Generalized class abstractions
- bj-cgab
- df-bj-gab
- bj-gabss
- bj-gabssd
- bj-gabeqd
- bj-gabeqis
- bj-elgab
- bj-gabima
- Restricted nonfreeness
- wrnf
- df-bj-rnf
- Russell's paradox
- bj-ru0
- bj-ru1
- bj-ru
- Curry's paradox in set theory
- currysetlem
- curryset
- currysetlem1
- currysetlem2
- currysetlem3
- currysetALT
- Some disjointness results
- bj-n0i
- bj-disjcsn
- bj-disjsn01
- bj-0nel1
- bj-1nel0
- Complements on direct products
- bj-xpimasn
- bj-xpima1sn
- bj-xpima1snALT
- bj-xpima2sn
- bj-xpnzex
- bj-xpexg2
- bj-xpnzexb
- bj-cleq
- "Singletonization" and tagging
- bj-snsetex
- bj-clex
- bj-csngl
- df-bj-sngl
- bj-sngleq
- bj-elsngl
- bj-snglc
- bj-snglss
- bj-0nelsngl
- bj-snglinv
- bj-snglex
- bj-ctag
- df-bj-tag
- bj-tageq
- bj-eltag
- bj-0eltag
- bj-tagn0
- bj-tagss
- bj-snglsstag
- bj-sngltagi
- bj-sngltag
- bj-tagci
- bj-tagcg
- bj-taginv
- bj-tagex
- bj-xtageq
- bj-xtagex
- Tuples of classes
- bj-cproj
- df-bj-proj
- bj-projeq
- bj-projeq2
- bj-projun
- bj-projex
- bj-projval
- bj-c1upl
- df-bj-1upl
- bj-1upleq
- bj-cpr1
- df-bj-pr1
- bj-pr1eq
- bj-pr1un
- bj-pr1val
- bj-pr11val
- bj-pr1ex
- bj-1uplth
- bj-1uplex
- bj-1upln0
- bj-c2uple
- df-bj-2upl
- bj-2upleq
- bj-pr21val
- bj-cpr2
- df-bj-pr2
- bj-pr2eq
- bj-pr2un
- bj-pr2val
- bj-pr22val
- bj-pr2ex
- bj-2uplth
- bj-2uplex
- bj-2upln0
- bj-2upln1upl
- Set theory: elementary operations relative to a universe
- bj-rcleqf
- bj-rcleq
- bj-reabeq
- bj-disj2r
- bj-sscon
- Set theory: miscellaneous
- eleq2w2ALT
- bj-clel3gALT
- bj-pw0ALT
- bj-sselpwuni
- bj-unirel
- bj-elpwg
- bj-vjust
- bj-nul
- bj-nuliota
- bj-nuliotaALT
- bj-vtoclgfALT
- bj-elsn12g
- bj-elsnb
- bj-pwcfsdom
- bj-grur1
- bj-bm1.3ii
- bj-dfid2ALT
- bj-0nelopab
- bj-brrelex12ALT
- bj-epelg
- bj-epelb
- bj-nsnid
- bj-rdg0gALT
- Evaluation at a class
- bj-evaleq
- bj-evalfun
- bj-evalfn
- bj-evalval
- bj-evalid
- bj-ndxarg
- bj-evalidval
- Elementwise operations
- celwise
- df-elwise
- Elementwise intersection (families of sets induced on a subset)
- bj-rest00
- bj-restsn
- bj-restsnss
- bj-restsnss2
- bj-restsn0
- bj-restsn10
- bj-restsnid
- bj-rest10
- bj-rest10b
- bj-restn0
- bj-restn0b
- bj-restpw
- bj-rest0
- bj-restb
- bj-restv
- bj-resta
- bj-restuni
- bj-restuni2
- bj-restreg
- Moore collections (complements)
- bj-raldifsn
- bj-0int
- bj-mooreset
- cmoore
- df-bj-moore
- bj-ismoore
- bj-ismoored0
- bj-ismoored
- bj-ismoored2
- bj-ismooredr
- bj-ismooredr2
- bj-discrmoore
- bj-0nmoore
- bj-snmoore
- bj-snmooreb
- bj-prmoore
- Maps-to notation for functions with three arguments
- bj-0nelmpt
- bj-mptval
- bj-dfmpoa
- bj-mpomptALT
- cmpt3
- df-bj-mpt3
- Currying
- csethom
- df-bj-sethom
- ctophom
- df-bj-tophom
- cmgmhom
- df-bj-mgmhom
- ctopmgmhom
- df-bj-topmgmhom
- ccur-
- df-bj-cur
- cunc-
- df-bj-unc
- Setting components of extensible structures
- cstrset
- df-strset
- setsstrset