Metamath Proof Explorer
Table of Contents - 20.31. Mathbox for Stefan O'Rear
- Additional elementary logic and set theory
- moxfr
- Additional theory of functions
- imaiinfv
- Additional topology
- elrfi
- elrfirn
- elrfirn2
- cmpfiiin
- Characterization of closure operators. Kuratowski closure axioms
- ismrcd1
- ismrcd2
- istopclsd
- ismrc
- Algebraic closure systems
- cnacs
- df-nacs
- isnacs
- nacsfg
- isnacs2
- mrefg2
- mrefg3
- nacsacs
- isnacs3
- incssnn0
- nacsfix
- Miscellanea 1. Map utilities
- constmap
- mapco2g
- mapco2
- mapfzcons
- mapfzcons1
- mapfzcons1cl
- mapfzcons2
- Miscellanea for polynomials
- mptfcl
- Multivariate polynomials over the integers
- cmzpcl
- cmzp
- df-mzpcl
- df-mzp
- mzpclval
- elmzpcl
- mzpclall
- mzpcln0
- mzpcl1
- mzpcl2
- mzpcl34
- mzpval
- dmmzp
- mzpincl
- mzpconst
- mzpf
- mzpproj
- mzpadd
- mzpmul
- mzpconstmpt
- mzpaddmpt
- mzpmulmpt
- mzpsubmpt
- mzpnegmpt
- mzpexpmpt
- mzpindd
- mzpmfp
- mzpsubst
- mzprename
- mzpresrename
- mzpcompact2lem
- mzpcompact2
- Miscellanea for Diophantine sets 1
- coeq0i
- fzsplit1nn0
- Diophantine sets 1: definitions
- cdioph
- df-dioph
- eldiophb
- eldioph
- diophrw
- eldioph2lem1
- eldioph2lem2
- eldioph2
- eldioph2b
- eldiophelnn0
- eldioph3b
- eldioph3
- Diophantine sets 2 miscellanea
- ellz1
- lzunuz
- fz1eqin
- lzenom
- elmapresaunres2
- Diophantine sets 2: union and intersection. Monotone Boolean algebra
- diophin
- diophun
- eldiophss
- Diophantine sets 3: construction
- diophrex
- eq0rabdioph
- eqrabdioph
- 0dioph
- vdioph
- anrabdioph
- orrabdioph
- 3anrabdioph
- 3orrabdioph
- Diophantine sets 4 miscellanea
- 2sbcrex
- sbcrexgOLD
- 2sbcrexOLD
- sbc2rex
- sbc2rexgOLD
- sbc4rex
- sbc4rexgOLD
- sbcrot3
- sbcrot5
- sbccomieg
- Diophantine sets 4: Quantification
- rexrabdioph
- rexfrabdioph
- 2rexfrabdioph
- 3rexfrabdioph
- 4rexfrabdioph
- 6rexfrabdioph
- 7rexfrabdioph
- Diophantine sets 5: Arithmetic sets
- rabdiophlem1
- rabdiophlem2
- elnn0rabdioph
- rexzrexnn0
- lerabdioph
- eluzrabdioph
- elnnrabdioph
- ltrabdioph
- nerabdioph
- dvdsrabdioph
- Diophantine sets 6: reusability. renumbering of variables
- eldioph4b
- eldioph4i
- diophren
- rabrenfdioph
- rabren3dioph
- Pigeonhole Principle and cardinality helpers
- fphpd
- fphpdo
- ctbnfien
- fiphp3d
- A non-closed set of reals is infinite
- rencldnfilem
- rencldnfi
- Lagrange's rational approximation theorem
- irrapxlem1
- irrapxlem2
- irrapxlem3
- irrapxlem4
- irrapxlem5
- irrapxlem6
- irrapx1
- Pell equations 1: A nontrivial solution always exists
- pellexlem1
- pellexlem2
- pellexlem3
- pellexlem4
- pellexlem5
- pellexlem6
- pellex
- Pell equations 2: Algebraic number theory of the solution set
- csquarenn
- cpell1qr
- cpell1234qr
- cpell14qr
- cpellfund
- df-squarenn
- df-pell1qr
- df-pell14qr
- df-pell1234qr
- df-pellfund
- pell1qrval
- elpell1qr
- pell14qrval
- elpell14qr
- pell1234qrval
- elpell1234qr
- pell1234qrre
- pell1234qrne0
- pell1234qrreccl
- pell1234qrmulcl
- pell14qrss1234
- pell14qrre
- pell14qrne0
- pell14qrgt0
- pell14qrrp
- pell1234qrdich
- elpell14qr2
- pell14qrmulcl
- pell14qrreccl
- pell14qrdivcl
- pell14qrexpclnn0
- pell14qrexpcl
- pell1qrss14
- pell14qrdich
- pell1qrge1
- pell1qr1
- elpell1qr2
- pell1qrgaplem
- pell1qrgap
- pell14qrgap
- pell14qrgapw
- pellqrexplicit
- Pell equations 3: characterizing fundamental solution
- infmrgelbi
- pellqrex
- pellfundval
- pellfundre
- pellfundge
- pellfundgt1
- pellfundlb
- pellfundglb
- pellfundex
- pellfund14gap
- pellfundrp
- pellfundne1
- Logarithm laws generalized to an arbitrary base
- reglogcl
- reglogltb
- reglogleb
- reglogmul
- reglogexp
- reglogbas
- reglog1
- reglogexpbas
- Pell equations 4: the positive solution group is infinite cyclic
- pellfund14
- pellfund14b
- X and Y sequences 1: Definition and recurrence laws
- crmx
- crmy
- df-rmx
- df-rmy
- rmxfval
- rmyfval
- rmspecsqrtnq
- rmspecnonsq
- qirropth
- rmspecfund
- rmxyelqirr
- rmxypairf1o
- rmxyelxp
- frmx
- frmy
- rmxyval
- rmspecpos
- rmxycomplete
- rmxynorm
- rmbaserp
- rmxyneg
- rmxyadd
- rmxy1
- rmxy0
- rmxneg
- rmx0
- rmx1
- rmxadd
- rmyneg
- rmy0
- rmy1
- rmyadd
- rmxp1
- rmyp1
- rmxm1
- rmym1
- rmxluc
- rmyluc
- rmyluc2
- rmxdbl
- rmydbl
- Ordering and induction lemmas for the integers
- monotuz
- monotoddzzfi
- monotoddzz
- oddcomabszz
- 2nn0ind
- zindbi
- X and Y sequences 2: Order properties
- rmxypos
- ltrmynn0
- ltrmxnn0
- lermxnn0
- rmxnn
- ltrmy
- rmyeq0
- rmyeq
- lermy
- rmynn
- rmynn0
- rmyabs
- jm2.24nn
- jm2.17a
- jm2.17b
- jm2.17c
- jm2.24
- rmygeid
- Congruential equations
- congtr
- congadd
- congmul
- congsym
- congneg
- congsub
- congid
- mzpcong
- congrep
- congabseq
- Alternating congruential equations
- acongid
- acongsym
- acongneg2
- acongtr
- acongeq12d
- acongrep
- fzmaxdif
- fzneg
- acongeq
- dvdsacongtr
- Additional theorems on integer divisibility
- coprmdvdsb
- modabsdifz
- dvdsabsmod0
- X and Y sequences 3: Divisibility properties
- jm2.18
- jm2.19lem1
- jm2.19lem2
- jm2.19lem3
- jm2.19lem4
- jm2.19
- jm2.21
- jm2.22
- jm2.23
- jm2.20nn
- jm2.25lem1
- jm2.25
- jm2.26a
- jm2.26lem3
- jm2.26
- jm2.15nn0
- jm2.16nn0
- X and Y sequences 4: Diophantine representability of Y
- jm2.27a
- jm2.27b
- jm2.27c
- jm2.27
- jm2.27dlem1
- jm2.27dlem2
- jm2.27dlem3
- jm2.27dlem4
- jm2.27dlem5
- rmydioph
- X and Y sequences 5: Diophantine representability of X, ^, _C
- rmxdiophlem
- rmxdioph
- jm3.1lem1
- jm3.1lem2
- jm3.1lem3
- jm3.1
- expdiophlem1
- expdiophlem2
- expdioph
- Uncategorized stuff not associated with a major project
- setindtr
- setindtrs
- dford3lem1
- dford3lem2
- dford3
- dford4
- wopprc
- rpnnen3lem
- rpnnen3
- More equivalents of the Axiom of Choice
- axac10
- harinf
- wdom2d2
- ttac
- pw2f1ocnv
- pw2f1o2
- pw2f1o2val
- pw2f1o2val2
- soeq12d
- freq12d
- weeq12d
- limsuc2
- wepwsolem
- wepwso
- dnnumch1
- dnnumch2
- dnnumch3lem
- dnnumch3
- dnwech
- fnwe2val
- fnwe2lem1
- fnwe2lem2
- fnwe2lem3
- fnwe2
- aomclem1
- aomclem2
- aomclem3
- aomclem4
- aomclem5
- aomclem6
- aomclem7
- aomclem8
- dfac11
- kelac1
- kelac2lem
- kelac2
- dfac21
- Finitely generated left modules
- clfig
- df-lfig
- islmodfg
- islssfg
- islssfg2
- islssfgi
- fglmod
- lsmfgcl
- Noetherian left modules I
- clnm
- df-lnm
- islnm
- islnm2
- lnmlmod
- lnmlssfg
- lnmlsslnm
- lnmfg
- kercvrlsm
- lmhmfgima
- lnmepi
- lmhmfgsplit
- lmhmlnmsplit
- lnmlmic
- Addenda for structure powers
- pwssplit4
- filnm
- pwslnmlem0
- pwslnmlem1
- pwslnmlem2
- pwslnm
- Every set admits a group structure iff choice
- unxpwdom3
- pwfi2f1o
- pwfi2en
- frlmpwfi
- gicabl
- imasgim
- isnumbasgrplem1
- harn0
- numinfctb
- isnumbasgrplem2
- isnumbasgrplem3
- isnumbasabl
- isnumbasgrp
- dfacbasgrp
- Noetherian rings and left modules II
- clnr
- df-lnr
- islnr
- lnrring
- lnrlnm
- islnr2
- islnr3
- lnr2i
- lpirlnr
- lnrfrlm
- lnrfg
- lnrfgtr
- Hilbert's Basis Theorem
- cldgis
- df-ldgis
- hbtlem1
- hbtlem2
- hbtlem7
- hbtlem4
- hbtlem3
- hbtlem5
- hbtlem6
- hbt
- Additional material on polynomials [DEPRECATED]
- cmnc
- cplylt
- df-mnc
- df-plylt
- dgrsub2
- elmnc
- mncply
- mnccoe
- mncn0
- Degree and minimal polynomial of algebraic numbers
- cdgraa
- cmpaa
- df-dgraa
- df-mpaa
- dgraaval
- dgraalem
- dgraacl
- dgraaf
- dgraaub
- dgraa0p
- mpaaeu
- mpaaval
- mpaalem
- mpaacl
- mpaadgr
- mpaaroot
- mpaamn
- Algebraic integers I
- citgo
- cza
- df-itgo
- df-za
- itgoval
- aaitgo
- itgoss
- itgocn
- cnsrexpcl
- fsumcnsrcl
- cnsrplycl
- rgspnval
- rgspncl
- rgspnssid
- rgspnmin
- rgspnid
- rngunsnply
- flcidc
- The determinant / matrix adjugate/adjunct
- Endomorphism algebra
- cmend
- df-mend
- algstr
- algbase
- algaddg
- algmulr
- algsca
- algvsca
- mendval
- mendbas
- mendplusgfval
- mendplusg
- mendmulrfval
- mendmulr
- mendsca
- mendvscafval
- mendvsca
- mendring
- mendlmod
- mendassa
- The class equation
- Cyclic groups and order
- idomrootle
- idomodle
- fiuneneq
- idomsubgmo
- proot1mul
- proot1hash
- proot1ex
- Cyclotomic polynomials
- ccytp
- df-cytp
- isdomn3
- mon1pid
- mon1psubm
- deg1mhm
- cytpfn
- cytpval
- Wedderburn's little theorem
- Hybrid categories proposal
- Miscellaneous topology
- fgraphopab
- fgraphxp
- hausgraph
- ctopsep
- ctoplnd
- df-topsep
- df-toplnd