Metamath Proof Explorer
Table of Contents - 2.4.24. Equinumerosity
- cen
- cdom
- csdm
- cfn
- df-en
- df-dom
- df-sdom
- df-fin
- relen
- reldom
- relsdom
- encv
- bren
- brdomg
- brdomi
- brdom
- domen
- domeng
- ctex
- f1oen3g
- f1oen2g
- f1dom2g
- f1oeng
- f1domg
- f1oen
- f1dom
- brsdom
- isfi
- enssdom
- dfdom2
- endom
- sdomdom
- sdomnen
- brdom2
- bren2
- enrefg
- enref
- eqeng
- domrefg
- en2d
- en3d
- en2i
- en3i
- dom2lem
- dom2d
- dom3d
- dom2
- dom3
- idssen
- ssdomg
- ener
- ensymb
- ensym
- ensymi
- ensymd
- entr
- domtr
- entri
- entr2i
- entr3i
- entr4i
- endomtr
- domentr
- f1imaeng
- f1imaen2g
- f1imaen
- en0
- en0OLD
- ensn1
- ensn1g
- enpr1g
- en1
- en1b
- reuen1
- euen1
- euen1b
- en1uniel
- 2dom
- fundmen
- fundmeng
- cnven
- cnvct
- fndmeng
- mapsnend
- mapsnen
- snmapen
- snmapen1
- map1
- en2sn
- en2snOLD
- snfi
- fiprc
- unen
- enrefnn
- enpr2d
- ssct
- difsnen
- domdifsn
- xpsnen
- xpsneng
- xp1en
- endisj
- undom
- xpcomf1o
- xpcomco
- xpcomen
- xpcomeng
- xpsnen2g
- xpassen
- xpdom2
- xpdom2g
- xpdom1g
- xpdom3
- xpdom1
- domunsncan
- omxpenlem
- omxpen
- omf1o
- pw2f1olem
- pw2f1o
- pw2eng
- pw2en
- fopwdom
- enfixsn
- sucdom2