Metamath Proof Explorer
Table of Contents - 5.4.9. Integers (as a subset of complex numbers)
- cz
- df-z
- elz
- nnnegz
- zre
- zcn
- zrei
- zssre
- zsscn
- zex
- elnnz
- 0z
- 0zd
- elnn0z
- elznn0nn
- elznn0
- elznn
- zle0orge1
- elz2
- dfz2
- zexALT
- nnssz
- nn0ssz
- nnz
- nn0z
- nnzi
- nn0zi
- elnnz1
- znnnlt1
- nnzrab
- nn0zrab
- 1z
- 1zzd
- 2z
- 3z
- 4z
- znegcl
- neg1z
- znegclb
- nn0negz
- nn0negzi
- zaddcl
- peano2z
- zsubcl
- peano2zm
- zletr
- zrevaddcl
- znnsub
- znn0sub
- nzadd
- zmulcl
- zltp1le
- zleltp1
- zlem1lt
- zltlem1
- zgt0ge1
- nnleltp1
- nnltp1le
- nnaddm1cl
- nn0ltp1le
- nn0leltp1
- nn0ltlem1
- nn0sub2
- nn0lt10b
- nn0lt2
- nn0le2is012
- nn0lem1lt
- nnlem1lt
- nnltlem1
- nnm1ge0
- nn0ge0div
- zdiv
- zdivadd
- zdivmul
- zextle
- zextlt
- recnz
- btwnnz
- gtndiv
- halfnz
- 3halfnz
- suprzcl
- prime
- msqznn
- zneo
- nneo
- nneoi
- zeo
- zeo2
- peano2uz2
- peano5uzi
- peano5uzti
- dfuzi
- uzind
- uzind2
- uzind3
- nn0ind
- nn0indALT
- nn0indd
- fzind
- fnn0ind
- nn0ind-raph
- zindd
- btwnz
- nn0zd
- nnzd
- zred
- zcnd
- znegcld
- peano2zd
- zaddcld
- zsubcld
- zmulcld
- znnn0nn
- zadd2cl
- zriotaneg
- suprfinzcl