Metamath Proof Explorer


Table of Contents - 5.6. Elementary integer functions

  1. The floor and ceiling functions
    1. cfl
    2. cceil
    3. df-fl
    4. df-ceil
    5. flval
    6. flcl
    7. reflcl
    8. fllelt
    9. flcld
    10. flle
    11. flltp1
    12. fllep1
    13. fraclt1
    14. fracle1
    15. fracge0
    16. flge
    17. fllt
    18. flflp1
    19. flid
    20. flidm
    21. flidz
    22. flltnz
    23. flwordi
    24. flword2
    25. flval2
    26. flval3
    27. flbi
    28. flbi2
    29. adddivflid
    30. ico01fl0
    31. flge0nn0
    32. flge1nn
    33. fldivnn0
    34. refldivcl
    35. divfl0
    36. fladdz
    37. flzadd
    38. flmulnn0
    39. btwnzge0
    40. 2tnp1ge0ge0
    41. flhalf
    42. fldivle
    43. fldivnn0le
    44. flltdivnn0lt
    45. ltdifltdiv
    46. fldiv4p1lem1div2
    47. fldiv4lem1div2uz2
    48. fldiv4lem1div2
    49. ceilval
    50. dfceil2
    51. ceilval2
    52. ceicl
    53. ceilcl
    54. ceilcld
    55. ceige
    56. ceilge
    57. ceilged
    58. ceim1l
    59. ceilm1lt
    60. ceile
    61. ceille
    62. ceilid
    63. ceilidz
    64. flleceil
    65. fleqceilz
    66. quoremz
    67. quoremnn0
    68. quoremnn0ALT
    69. intfrac2
    70. intfracq
    71. fldiv
    72. fldiv2
    73. fznnfl
    74. uzsup
    75. ioopnfsup
    76. icopnfsup
    77. rpsup
    78. resup
    79. xrsup
  2. The modulo (remainder) operation
    1. cmo
    2. df-mod
    3. modval
    4. modvalr
    5. modcl
    6. flpmodeq
    7. modcld
    8. mod0
    9. mulmod0
    10. negmod0
    11. modge0
    12. modlt
    13. modelico
    14. moddiffl
    15. moddifz
    16. modfrac
    17. flmod
    18. intfrac
    19. zmod10
    20. zmod1congr
    21. modmulnn
    22. modvalp1
    23. zmodcl
    24. zmodcld
    25. zmodfz
    26. zmodfzo
    27. zmodfzp1
    28. modid
    29. modid0
    30. modid2
    31. zmodid2
    32. zmodidfzo
    33. zmodidfzoimp
    34. 0mod
    35. 1mod
    36. modabs
    37. modabs2
    38. modcyc
    39. modcyc2
    40. modadd1
    41. modaddabs
    42. modaddmod
    43. muladdmodid
    44. mulp1mod1
    45. modmuladd
    46. modmuladdim
    47. modmuladdnn0
    48. negmod
    49. m1modnnsub1
    50. m1modge3gt1
    51. addmodid
    52. addmodidr
    53. modadd2mod
    54. modm1p1mod0
    55. modltm1p1mod
    56. modmul1
    57. modmul12d
    58. modnegd
    59. modadd12d
    60. modsub12d
    61. modsubmod
    62. modsubmodmod
    63. 2txmodxeq0
    64. 2submod
    65. modifeq2int
    66. modaddmodup
    67. modaddmodlo
    68. modmulmod
    69. modmulmodr
    70. modaddmulmod
    71. moddi
    72. modsubdir
    73. modeqmodmin
    74. modirr
    75. modfzo0difsn
    76. modsumfzodifsn
    77. modlteq
    78. addmodlteq
  3. Miscellaneous theorems about integers
    1. om2uz0i
    2. om2uzsuci
    3. om2uzuzi
    4. om2uzlti
    5. om2uzlt2i
    6. om2uzrani
    7. om2uzf1oi
    8. om2uzisoi
    9. om2uzoi
    10. om2uzrdg
    11. uzrdglem
    12. uzrdgfni
    13. uzrdg0i
    14. uzrdgsuci
    15. ltweuz
    16. ltwenn
    17. ltwefz
    18. uzenom
    19. uzinf
    20. nnnfi
    21. uzrdgxfr
    22. fzennn
    23. fzen2
    24. cardfz
    25. hashgf1o
    26. fzfi
    27. fzfid
    28. fzofi
    29. fsequb
    30. fsequb2
    31. fseqsupcl
    32. fseqsupubi
    33. nn0ennn
    34. nnenom
    35. nnct
    36. uzindi
    37. axdc4uzlem
    38. axdc4uz
    39. ssnn0fi
    40. rabssnn0fi
  4. Strong induction over upper sets of integers
    1. uzsinds
    2. nnsinds
    3. nn0sinds
  5. Finitely supported functions over the nonnegative integers
    1. fsuppmapnn0fiublem
    2. fsuppmapnn0fiub
    3. fsuppmapnn0fiubex
    4. fsuppmapnn0fiub0
    5. suppssfz
    6. fsuppmapnn0ub
    7. fsuppmapnn0fz
    8. mptnn0fsupp
    9. mptnn0fsuppd
    10. mptnn0fsuppr
    11. f13idfv
  6. The infinite sequence builder "seq" - extension
    1. cseq
    2. df-seq
    3. seqex
    4. seqeq1
    5. seqeq2
    6. seqeq3
    7. seqeq1d
    8. seqeq2d
    9. seqeq3d
    10. seqeq123d
    11. nfseq
    12. seqval
    13. seqfn
    14. seq1
    15. seq1i
    16. seqp1
    17. seqexw
    18. seqp1d
    19. seqp1iOLD
    20. seqm1
    21. seqcl2
    22. seqf2
    23. seqcl
    24. seqf
    25. seqfveq2
    26. seqfeq2
    27. seqfveq
    28. seqfeq
    29. seqshft2
    30. seqres
    31. serf
    32. serfre
    33. monoord
    34. monoord2
    35. sermono
    36. seqsplit
    37. seq1p
    38. seqcaopr3
    39. seqcaopr2
    40. seqcaopr
    41. seqf1olem2a
    42. seqf1olem1
    43. seqf1olem2
    44. seqf1o
    45. seradd
    46. sersub
    47. seqid3
    48. seqid
    49. seqid2
    50. seqhomo
    51. seqz
    52. seqfeq4
    53. seqfeq3
    54. seqdistr
    55. ser0
    56. ser0f
    57. serge0
    58. serle
    59. ser1const
    60. seqof
    61. seqof2
  7. Integer powers
    1. cexp
    2. df-exp
    3. expval
    4. expnnval
    5. exp0
    6. 0exp0e1
    7. exp1
    8. expp1
    9. expneg
    10. expneg2
    11. expn1
    12. expcllem
    13. expcl2lem
    14. nnexpcl
    15. nn0expcl
    16. zexpcl
    17. qexpcl
    18. reexpcl
    19. expcl
    20. rpexpcl
    21. qexpclz
    22. reexpclz
    23. expclzlem
    24. expclz
    25. m1expcl2
    26. m1expcl
    27. zexpcld
    28. nn0expcli
    29. nn0sqcl
    30. expm1t
    31. 1exp
    32. expeq0
    33. expne0
    34. expne0i
    35. expgt0
    36. expnegz
    37. 0exp
    38. expge0
    39. expge1
    40. expgt1
    41. mulexp
    42. mulexpz
    43. exprec
    44. expadd
    45. expaddzlem
    46. expaddz
    47. expmul
    48. expmulz
    49. m1expeven
    50. expsub
    51. expp1z
    52. expm1
    53. expdiv
    54. sqval
    55. sqneg
    56. sqsubswap
    57. sqcl
    58. sqmul
    59. sqeq0
    60. sqdiv
    61. sqdivid
    62. sqne0
    63. resqcl
    64. resqcld
    65. sqgt0
    66. sqn0rp
    67. nnsqcl
    68. zsqcl
    69. qsqcl
    70. sq11
    71. nn0sq11
    72. lt2sq
    73. le2sq
    74. le2sq2
    75. sqge0
    76. sqge0d
    77. zsqcl2
    78. 0expd
    79. exp0d
    80. exp1d
    81. expeq0d
    82. sqvald
    83. sqcld
    84. sqeq0d
    85. expcld
    86. expp1d
    87. expaddd
    88. expmuld
    89. sqrecd
    90. expclzd
    91. expne0d
    92. expnegd
    93. exprecd
    94. expp1zd
    95. expm1d
    96. expsubd
    97. sqmuld
    98. sqdivd
    99. expdivd
    100. mulexpd
    101. znsqcld
    102. reexpcld
    103. expge0d
    104. expge1d
    105. ltexp2a
    106. expmordi
    107. rpexpmord
    108. expcan
    109. ltexp2
    110. leexp2
    111. leexp2a
    112. ltexp2r
    113. leexp2r
    114. leexp1a
    115. exple1
    116. expubnd
    117. sumsqeq0
    118. sqvali
    119. sqcli
    120. sqeq0i
    121. sqrecii
    122. sqmuli
    123. sqdivi
    124. resqcli
    125. sqgt0i
    126. sqge0i
    127. lt2sqi
    128. le2sqi
    129. sq11i
    130. sq0
    131. sq0i
    132. sq0id
    133. sq1
    134. neg1sqe1
    135. sq2
    136. sq3
    137. sq4e2t8
    138. cu2
    139. irec
    140. i2
    141. i3
    142. i4
    143. nnlesq
    144. zzlesq
    145. iexpcyc
    146. expnass
    147. sqlecan
    148. subsq
    149. subsq2
    150. binom2i
    151. subsqi
    152. sqeqori
    153. subsq0i
    154. sqeqor
    155. binom2
    156. binom21
    157. binom2sub
    158. binom2sub1
    159. binom2subi
    160. mulbinom2
    161. binom3
    162. sq01
    163. zesq
    164. nnesq
    165. crreczi
    166. bernneq
    167. bernneq2
    168. bernneq3
    169. expnbnd
    170. expnlbnd
    171. expnlbnd2
    172. expmulnbnd
    173. digit2
    174. digit1
    175. modexp
    176. discr1
    177. discr
    178. expnngt1
    179. expnngt1b
    180. sqoddm1div8
    181. nnsqcld
    182. nnexpcld
    183. nn0expcld
    184. rpexpcld
    185. ltexp2rd
    186. reexpclzd
    187. sqgt0d
    188. ltexp2d
    189. leexp2d
    190. expcand
    191. leexp2ad
    192. leexp2rd
    193. lt2sqd
    194. le2sqd
    195. sq11d
    196. mulsubdivbinom2
    197. muldivbinom2
    198. sq10
    199. sq10e99m1
    200. 3dec
  8. Ordered pair theorem for nonnegative integers
    1. nn0le2msqi
    2. nn0opthlem1
    3. nn0opthlem2
    4. nn0opthi
    5. nn0opth2i
    6. nn0opth2
  9. Factorial function
    1. cfa
    2. df-fac
    3. facnn
    4. fac0
    5. fac1
    6. facp1
    7. fac2
    8. fac3
    9. fac4
    10. facnn2
    11. faccl
    12. faccld
    13. facmapnn
    14. facne0
    15. facdiv
    16. facndiv
    17. facwordi
    18. faclbnd
    19. faclbnd2
    20. faclbnd3
    21. faclbnd4lem1
    22. faclbnd4lem2
    23. faclbnd4lem3
    24. faclbnd4lem4
    25. faclbnd4
    26. faclbnd5
    27. faclbnd6
    28. facubnd
    29. facavg
  10. The binomial coefficient operation
    1. cbc
    2. df-bc
    3. bcval
    4. bcval2
    5. bcval3
    6. bcval4
    7. bcrpcl
    8. bccmpl
    9. bcn0
    10. bc0k
    11. bcnn
    12. bcn1
    13. bcnp1n
    14. bcm1k
    15. bcp1n
    16. bcp1nk
    17. bcval5
    18. bcn2
    19. bcp1m1
    20. bcpasc
    21. bccl
    22. bccl2
    23. bcn2m1
    24. bcn2p1
    25. permnn
    26. bcnm1
    27. 4bc3eq4
    28. 4bc2eq6
  11. The ` # ` (set size) function
    1. chash
    2. df-hash
    3. hashkf
    4. hashgval
    5. hashginv
    6. hashinf
    7. hashbnd
    8. hashfxnn0
    9. hashf
    10. hashxnn0
    11. hashresfn
    12. dmhashres
    13. hashnn0pnf
    14. hashnnn0genn0
    15. hashnemnf
    16. hashv01gt1
    17. hashfz1
    18. hashen
    19. hasheni
    20. hasheqf1o
    21. fiinfnf1o
    22. hasheqf1oi
    23. hashf1rn
    24. hasheqf1od
    25. fz1eqb
    26. hashcard
    27. hashcl
    28. hashxrcl
    29. hashclb
    30. nfile
    31. hashvnfin
    32. hashnfinnn0
    33. isfinite4
    34. hasheq0
    35. hashneq0
    36. hashgt0n0
    37. hashnncl
    38. hash0
    39. hashelne0d
    40. hashsng
    41. hashen1
    42. hash1elsn
    43. hashrabrsn
    44. hashrabsn01
    45. hashrabsn1
    46. hashfn
    47. fseq1hash
    48. hashgadd
    49. hashgval2
    50. hashdom
    51. hashdomi
    52. hashsdom
    53. hashun
    54. hashun2
    55. hashun3
    56. hashinfxadd
    57. hashunx
    58. hashge0
    59. hashgt0
    60. hashge1
    61. 1elfz0hash
    62. hashnn0n0nn
    63. hashunsng
    64. hashunsngx
    65. hashunsnggt
    66. hashprg
    67. elprchashprn2
    68. hashprb
    69. hashprdifel
    70. prhash2ex
    71. hashle00
    72. hashgt0elex
    73. hashgt0elexb
    74. hashp1i
    75. hash1
    76. hash2
    77. hash3
    78. hash4
    79. pr0hash2ex
    80. hashss
    81. prsshashgt1
    82. hashin
    83. hashssdif
    84. hashdif
    85. hashdifsn
    86. hashdifpr
    87. hashsn01
    88. hashsnle1
    89. hashsnlei
    90. hash1snb
    91. euhash1
    92. hash1n0
    93. hashgt12el
    94. hashgt12el2
    95. hashgt23el
    96. hashunlei
    97. hashsslei
    98. hashfz
    99. fzsdom2
    100. hashfzo
    101. hashfzo0
    102. hashfzp1
    103. hashfz0
    104. hashxplem
    105. hashxp
    106. hashmap
    107. hashpw
    108. hashfun
    109. hashres
    110. hashreshashfun
    111. hashimarn
    112. hashimarni
    113. hashfundm
    114. hashf1dmrn
    115. resunimafz0
    116. fnfz0hash
    117. ffz0hash
    118. fnfz0hashnn0
    119. ffzo0hash
    120. fnfzo0hash
    121. fnfzo0hashnn0
    122. hashbclem
    123. hashbc
    124. hashfacen
    125. hashfacenOLD
    126. hashf1lem1
    127. hashf1lem1OLD
    128. hashf1lem2
    129. hashf1
    130. hashfac
    131. leiso
    132. leisorel
    133. fz1isolem
    134. fz1iso
    135. ishashinf
    136. seqcoll
    137. seqcoll2
    138. phphashd
    139. phphashrd
    140. Proper unordered pairs and triples (sets of size 2 and 3)
    141. Functions with a domain containing at least two different elements
    142. Finite induction on the size of the first component of a binary relation