Metamath Proof Explorer
Table of Contents - 7.1. Extensible structures
- Basic definitions
- Extensible structures as structures with components
- Substitution of components
- Slots
- Structure component indices
- Base sets
- Base set restrictions
- Slot definitions
- cplusg
- cmulr
- cstv
- csca
- cvsca
- cip
- cts
- cple
- coc
- cds
- cunif
- chom
- cco
- df-plusg
- df-mulr
- df-starv
- df-sca
- df-vsca
- df-ip
- df-tset
- df-ple
- df-ocomp
- df-ds
- df-unif
- df-hom
- df-cco
- plusgndx
- plusgid
- plusgndxnn
- basendxltplusgndx
- basendxnplusgndx
- basendxnplusgndxOLD
- grpstr
- grpstrndx
- grpbase
- grpbaseOLD
- grpplusg
- grpplusgOLD
- ressplusg
- grpbasex
- grpplusgx
- mulrndx
- mulrid
- basendxnmulrndx
- basendxnmulrndxOLD
- plusgndxnmulrndx
- rngstr
- rngbase
- rngplusg
- rngmulr
- starvndx
- starvid
- starvndxnbasendx
- starvndxnplusgndx
- starvndxnmulrndx
- ressmulr
- ressstarv
- srngstr
- srngbase
- srngplusg
- srngmulr
- srnginvl
- scandx
- scaid
- scandxnbasendx
- scandxnplusgndx
- scandxnmulrndx
- vscandx
- vscaid
- vscandxnbasendx
- vscandxnplusgndx
- vscandxnmulrndx
- vscandxnscandx
- lmodstr
- lmodbase
- lmodplusg
- lmodsca
- lmodvsca
- ipndx
- ipid
- ipndxnbasendx
- ipndxnplusgndx
- ipndxnmulrndx
- slotsdifipndx
- ipsstr
- ipsbase
- ipsaddg
- ipsmulr
- ipssca
- ipsvsca
- ipsip
- resssca
- ressvsca
- ressip
- phlstr
- phlbase
- phlplusg
- phlsca
- phlvsca
- phlip
- tsetndx
- tsetid
- tsetndxnn
- basendxlttsetndx
- tsetndxnbasendx
- tsetndxnplusgndx
- tsetndxnmulrndx
- tsetndxnstarvndx
- slotstnscsi
- topgrpstr
- topgrpbas
- topgrpplusg
- topgrptset
- resstset
- plendx
- pleid
- plendxnn
- basendxltplendx
- plendxnbasendx
- plendxnplusgndx
- plendxnmulrndx
- plendxnscandx
- plendxnvscandx
- slotsdifplendx
- otpsstr
- otpsbas
- otpstset
- otpsle
- ressle
- ocndx
- ocid
- basendxnocndx
- plendxnocndx
- dsndx
- dsid
- dsndxnn
- basendxltdsndx
- dsndxnbasendx
- dsndxnplusgndx
- dsndxnmulrndx
- slotsdnscsi
- dsndxntsetndx
- slotsdifdsndx
- unifndx
- unifid
- unifndxnn
- basendxltunifndx
- unifndxnbasendx
- unifndxntsetndx
- slotsdifunifndx
- ressunif
- odrngstr
- odrngbas
- odrngplusg
- odrngmulr
- odrngtset
- odrngle
- odrngds
- ressds
- homndx
- homid
- ccondx
- ccoid
- slotsbhcdif
- slotsbhcdifOLD
- slotsdifplendx2
- slotsdifocndx
- resshom
- ressco
- Definition of the structure product
- crest
- ctopn
- df-rest
- df-topn
- restfn
- topnfn
- restval
- elrest
- elrestr
- 0rest
- restid2
- restsspw
- firest
- restid
- topnval
- topnid
- topnpropd
- ctg
- cpt
- c0g
- cgsu
- df-0g
- df-gsum
- df-topgen
- df-pt
- cprds
- cpws
- df-prds
- reldmprds
- df-pws
- prdsbasex
- imasvalstr
- prdsvalstr
- prdsbaslem
- prdsvallem
- prdsval
- prdssca
- prdsbas
- prdsplusg
- prdsmulr
- prdsvsca
- prdsip
- prdsle
- prdsless
- prdsds
- prdsdsfn
- prdstset
- prdshom
- prdsco
- prdsbas2
- prdsbasmpt
- prdsbasfn
- prdsbasprj
- prdsplusgval
- prdsplusgfval
- prdsmulrval
- prdsmulrfval
- prdsleval
- prdsdsval
- prdsvscaval
- prdsvscafval
- prdsbas3
- prdsbasmpt2
- prdsbascl
- prdsdsval2
- prdsdsval3
- pwsval
- pwsbas
- pwselbasb
- pwselbas
- pwsplusgval
- pwsmulrval
- pwsle
- pwsleval
- pwsvscafval
- pwsvscaval
- pwssca
- pwsdiagel
- pwssnf1o
- Definition of the structure quotient
- cordt
- cxrs
- df-ordt
- df-xrs
- cqtop
- cimas
- cqus
- cxps
- df-qtop
- df-imas
- df-qus
- df-xps
- imasval
- imasbas
- imasds
- imasdsfn
- imasdsval
- imasdsval2
- imasplusg
- imasmulr
- imassca
- imasvsca
- imasip
- imastset
- imasle
- f1ocpbllem
- f1ocpbl
- f1ovscpbl
- f1olecpbl
- imasaddfnlem
- imasaddvallem
- imasaddflem
- imasaddfn
- imasaddval
- imasaddf
- imasmulfn
- imasmulval
- imasmulf
- imasvscafn
- imasvscaval
- imasvscaf
- imasless
- imasleval
- qusval
- quslem
- qusin
- qusbas
- quss
- divsfval
- ercpbllem
- ercpbl
- erlecpbl
- qusaddvallem
- qusaddflem
- qusaddval
- qusaddf
- qusmulval
- qusmulf
- fnpr2o
- fnpr2ob
- fvpr0o
- fvpr1o
- fvprif
- xpsfrnel
- xpsfeq
- xpsfrnel2
- xpscf
- xpsfval
- xpsff1o
- xpsfrn
- xpsff1o2
- xpsval
- xpsrnbas
- xpsbas
- xpsaddlem
- xpsadd
- xpsmul
- xpssca
- xpsvsca
- xpsless
- xpsle