Metamath Proof Explorer
Table of Contents - 10.3. Rings
- Multiplicative Group
- cmgp
- df-mgp
- fnmgp
- mgpval
- mgpplusg
- mgplemOLD
- mgpbas
- mgpbasOLD
- mgpsca
- mgpscaOLD
- mgptset
- mgptsetOLD
- mgptopn
- mgpds
- mgpdsOLD
- mgpress
- mgpressOLD
- Ring unit
- cur
- df-ur
- ringidval
- dfur2
- Semirings
- The binomial theorem for semirings
- Definition and basic properties of unital rings
- crg
- ccrg
- df-ring
- df-cring
- isring
- ringgrp
- ringmgp
- iscrng
- crngmgp
- ringgrpd
- ringmnd
- ringmgm
- crngring
- crngringd
- crnggrpd
- mgpf
- ringi
- ringcl
- crngcom
- iscrng2
- ringass
- ringideu
- ringdi
- ringdir
- ringidcl
- ring0cl
- ringidmlem
- ringlidm
- ringridm
- isringid
- ringid
- ringadd2
- rngo2times
- ringidss
- ringacl
- ringcom
- ringabl
- ringcmn
- ringpropd
- crngpropd
- ringprop
- isringd
- iscrngd
- ringlz
- ringrz
- ringsrg
- ring1eq0
- ring1ne0
- ringinvnz1ne0
- ringinvnzdiv
- ringnegl
- rngnegr
- ringmneg1
- ringmneg2
- ringm2neg
- ringsubdi
- rngsubdir
- mulgass2
- ring1
- ringn0
- ringlghm
- ringrghm
- gsummulc1
- gsummulc2
- gsummgp0
- gsumdixp
- prdsmgp
- prdsmulrcl
- prdsringd
- prdscrngd
- prds1
- pwsring
- pws1
- pwscrng
- pwsmgp
- imasring
- qusring2
- crngbinom
- Opposite ring
- coppr
- df-oppr
- opprval
- opprmulfval
- opprmul
- crngoppr
- opprlem
- opprlemOLD
- opprbas
- opprbasOLD
- oppradd
- oppraddOLD
- opprring
- opprringb
- oppr0
- oppr1
- opprneg
- opprsubg
- mulgass3
- Divisibility
- cdsr
- cui
- cir
- df-dvdsr
- df-unit
- df-irred
- reldvdsr
- dvdsrval
- dvdsr
- dvdsr2
- dvdsrmul
- dvdsrcl
- dvdsrcl2
- dvdsrid
- dvdsrtr
- dvdsrmul1
- dvdsrneg
- dvdsr01
- dvdsr02
- isunit
- 1unit
- unitcl
- unitss
- opprunit
- crngunit
- dvdsunit
- unitmulcl
- unitmulclb
- unitgrpbas
- unitgrp
- unitabl
- unitgrpid
- unitsubm
- cinvr
- df-invr
- invrfval
- unitinvcl
- unitinvinv
- ringinvcl
- unitlinv
- unitrinv
- 1rinv
- 0unit
- unitnegcl
- cdvr
- df-dvr
- dvrfval
- dvrval
- dvrcl
- unitdvcl
- dvrid
- dvr1
- dvrass
- dvrcan1
- dvrcan3
- dvreq1
- ringinvdv
- rngidpropd
- dvdsrpropd
- unitpropd
- invrpropd
- isirred
- isnirred
- isirred2
- opprirred
- irredn0
- irredcl
- irrednu
- irredn1
- irredrmul
- irredlmul
- irredmul
- irredneg
- irrednegb
- Ring primes
- crpm
- df-rprm
- Ring homomorphisms
- crh
- crs
- cric
- df-rnghom
- df-rngiso
- dfrhm2
- df-ric
- rhmrcl1
- rhmrcl2
- isrhm
- rhmmhm
- isrim0
- rimrcl
- rhmghm
- rhmf
- rhmmul
- isrhm2d
- isrhmd
- rhm1
- idrhm
- rhmf1o
- isrim
- rimf1o
- rimrhm
- rimgim
- rhmco
- pwsco1rhm
- pwsco2rhm
- f1ghm0to0
- f1rhm0to0ALT
- gim0to0
- kerf1ghm
- brric
- brric2
- ricgic