Metamath Proof Explorer
Table of Contents - 14.1. Polynomials
- Polynomial degrees
- cmdg
- cdg1
- df-mdeg
- df-deg1
- reldmmdeg
- tdeglem1
- tdeglem1OLD
- tdeglem3
- tdeglem3OLD
- tdeglem4
- tdeglem4OLD
- tdeglem2
- mdegfval
- mdegval
- mdegleb
- mdeglt
- mdegldg
- mdegxrcl
- mdegxrf
- mdegcl
- mdeg0
- mdegnn0cl
- degltlem1
- degltp1le
- mdegaddle
- mdegvscale
- mdegvsca
- mdegle0
- mdegmullem
- mdegmulle2
- deg1fval
- deg1xrf
- deg1xrcl
- deg1cl
- mdegpropd
- deg1fvi
- deg1propd
- deg1z
- deg1nn0cl
- deg1n0ima
- deg1nn0clb
- deg1lt0
- deg1ldg
- deg1ldgn
- deg1ldgdomn
- deg1leb
- deg1val
- deg1lt
- deg1ge
- coe1mul3
- coe1mul4
- deg1addle
- deg1addle2
- deg1add
- deg1vscale
- deg1vsca
- deg1invg
- deg1suble
- deg1sub
- deg1mulle2
- deg1sublt
- deg1le0
- deg1sclle
- deg1scl
- deg1mul2
- deg1mul3
- deg1mul3le
- deg1tmle
- deg1tm
- deg1pwle
- deg1pw
- ply1nz
- ply1nzb
- ply1domn
- ply1idom
- The division algorithm for univariate polynomials
- cmn1
- cuc1p
- cq1p
- cr1p
- cig1p
- df-mon1
- df-uc1p
- df-q1p
- df-r1p
- df-ig1p
- ply1divmo
- ply1divex
- ply1divalg
- ply1divalg2
- uc1pval
- isuc1p
- mon1pval
- ismon1p
- uc1pcl
- mon1pcl
- uc1pn0
- mon1pn0
- uc1pdeg
- uc1pldg
- mon1pldg
- mon1puc1p
- uc1pmon1p
- deg1submon1p
- q1pval
- q1peqb
- q1pcl
- r1pval
- r1pcl
- r1pdeglt
- r1pid
- dvdsq1p
- dvdsr1p
- ply1remlem
- ply1rem
- facth1
- fta1glem1
- fta1glem2
- fta1g
- fta1blem
- fta1b
- drnguc1p
- ig1peu
- ig1pval
- ig1pval2
- ig1pval3
- ig1pcl
- ig1pdvds
- ig1prsp
- ply1lpir
- ply1pid
- Elementary properties of complex polynomials
- cply
- cidp
- ccoe
- cdgr
- df-ply
- df-idp
- df-coe
- df-dgr
- plyco0
- plyval
- plybss
- elply
- elply2
- plyun0
- plyf
- plyss
- plyssc
- elplyr
- elplyd
- ply1termlem
- ply1term
- plypow
- plyconst
- ne0p
- ply0
- plyid
- plyeq0lem
- plyeq0
- plypf1
- plyaddlem1
- plymullem1
- plyaddlem
- plymullem
- plyadd
- plymul
- plysub
- plyaddcl
- plymulcl
- plysubcl
- coeval
- coeeulem
- coeeu
- coelem
- coeeq
- dgrval
- dgrlem
- coef
- coef2
- coef3
- dgrcl
- dgrub
- dgrub2
- dgrlb
- coeidlem
- coeid
- coeid2
- coeid3
- plyco
- coeeq2
- dgrle
- dgreq
- 0dgr
- 0dgrb
- dgrnznn
- coefv0
- coeaddlem
- coemullem
- coeadd
- coemul
- coe11
- coemulhi
- coemulc
- coe0
- coesub
- coe1termlem
- coe1term
- dgr1term
- plycn
- dgr0
- coeidp
- dgrid
- dgreq0
- dgrlt
- dgradd
- dgradd2
- dgrmul2
- dgrmul
- dgrmulc
- dgrsub
- dgrcolem1
- dgrcolem2
- dgrco
- plycjlem
- plycj
- coecj
- plyrecj
- plymul0or
- ofmulrt
- plyreres
- dvply1
- dvply2g
- dvply2
- dvnply2
- dvnply
- plycpn
- The division algorithm for polynomials
- cquot
- df-quot
- quotval
- plydivlem1
- plydivlem2
- plydivlem3
- plydivlem4
- plydivex
- plydiveu
- plydivalg
- quotlem
- quotcl
- quotcl2
- quotdgr
- plyremlem
- plyrem
- facth
- fta1lem
- fta1
- quotcan
- vieta1lem1
- vieta1lem2
- vieta1
- plyexmo
- Algebraic numbers
- caa
- df-aa
- elaa
- aacn
- aasscn
- elqaalem1
- elqaalem2
- elqaalem3
- elqaa
- qaa
- qssaa
- iaa
- aareccl
- aacjcl
- aannenlem1
- aannenlem2
- aannenlem3
- aannen
- Liouville's approximation theorem
- aalioulem1
- aalioulem2
- aalioulem3
- aalioulem4
- aalioulem5
- aalioulem6
- aaliou
- geolim3
- aaliou2
- aaliou2b
- aaliou3lem1
- aaliou3lem2
- aaliou3lem3
- aaliou3lem8
- aaliou3lem4
- aaliou3lem5
- aaliou3lem6
- aaliou3lem7
- aaliou3lem9
- aaliou3