Metamath Proof Explorer
Table of Contents - 14.4. Basic number theory
- Wilson's theorem
- wilthlem1
- wilthlem2
- wilthlem3
- wilth
- wilthimp
- The Fundamental Theorem of Algebra
- ftalem1
- ftalem2
- ftalem3
- ftalem4
- ftalem5
- ftalem6
- ftalem7
- fta
- The Basel problem (ζ(2) = π2/6)
- basellem1
- basellem2
- basellem3
- basellem4
- basellem5
- basellem6
- basellem7
- basellem8
- basellem9
- basel
- Number-theoretical functions
- ccht
- cvma
- cchp
- cppi
- cmu
- csgm
- df-cht
- df-vma
- df-chp
- df-ppi
- df-mu
- df-sgm
- efnnfsumcl
- ppisval
- ppisval2
- ppifi
- prmdvdsfi
- chtf
- chtcl
- chtval
- efchtcl
- chtge0
- vmaval
- isppw
- isppw2
- vmappw
- vmaprm
- vmacl
- vmaf
- efvmacl
- vmage0
- chpval
- chpf
- chpcl
- efchpcl
- chpge0
- ppival
- ppival2
- ppival2g
- ppif
- ppicl
- muval
- muval1
- muval2
- isnsqf
- issqf
- sqfpc
- dvdssqf
- sqf11
- muf
- mucl
- sgmval
- sgmval2
- 0sgm
- sgmf
- sgmcl
- sgmnncl
- mule1
- chtfl
- chpfl
- ppiprm
- ppinprm
- chtprm
- chtnprm
- chpp1
- chtwordi
- chpwordi
- chtdif
- efchtdvds
- ppifl
- ppip1le
- ppiwordi
- ppidif
- ppi1
- cht1
- vma1
- chp1
- ppi1i
- ppi2i
- ppi2
- ppi3
- cht2
- cht3
- ppinncl
- chtrpcl
- ppieq0
- ppiltx
- prmorcht
- mumullem1
- mumullem2
- mumul
- sqff1o
- fsumdvdsdiaglem
- fsumdvdsdiag
- fsumdvdscom
- dvdsppwf1o
- dvdsflf1o
- dvdsflsumcom
- fsumfldivdiaglem
- fsumfldivdiag
- musum
- musumsum
- muinv
- dvdsmulf1o
- fsumdvdsmul
- sgmppw
- 0sgmppw
- 1sgmprm
- 1sgm2ppw
- sgmmul
- ppiublem1
- ppiublem2
- ppiub
- vmalelog
- chtlepsi
- chprpcl
- chpeq0
- chteq0
- chtleppi
- chtublem
- chtub
- fsumvma
- fsumvma2
- pclogsum
- vmasum
- logfac2
- chpval2
- chpchtsum
- chpub
- logfacubnd
- logfaclbnd
- logfacbnd3
- logfacrlim
- logexprlim
- logfacrlim2
- Perfect Number Theorem
- mersenne
- perfect1
- perfectlem1
- perfectlem2
- perfect
- Characters of Z/nZ
- cdchr
- df-dchr
- dchrval
- dchrbas
- dchrelbas
- dchrelbas2
- dchrelbas3
- dchrelbasd
- dchrrcl
- dchrmhm
- dchrf
- dchrelbas4
- dchrzrh1
- dchrzrhcl
- dchrzrhmul
- dchrplusg
- dchrmul
- dchrmulcl
- dchrn0
- dchr1cl
- dchrmulid2
- dchrinvcl
- dchrabl
- dchrfi
- dchrghm
- dchr1
- dchreq
- dchrresb
- dchrabs
- dchrinv
- dchrabs2
- dchr1re
- dchrptlem1
- dchrptlem2
- dchrptlem3
- dchrpt
- dchrsum2
- dchrsum
- sumdchr2
- dchrhash
- sumdchr
- dchr2sum
- sum2dchr
- Bertrand's postulate
- bcctr
- pcbcctr
- bcmono
- bcmax
- bcp1ctr
- bclbnd
- efexple
- bpos1lem
- bpos1
- bposlem1
- bposlem2
- bposlem3
- bposlem4
- bposlem5
- bposlem6
- bposlem7
- bposlem8
- bposlem9
- bpos
- Quadratic residues and the Legendre symbol
- clgs
- df-lgs
- zabsle1
- lgslem1
- lgslem2
- lgslem3
- lgslem4
- lgsval
- lgsfval
- lgsfcl2
- lgscllem
- lgsfcl
- lgsfle1
- lgsval2lem
- lgsval4lem
- lgscl2
- lgs0
- lgscl
- lgsle1
- lgsval2
- lgs2
- lgsval3
- lgsvalmod
- lgsval4
- lgsfcl3
- lgsval4a
- lgscl1
- lgsneg
- lgsneg1
- lgsmod
- lgsdilem
- lgsdir2lem1
- lgsdir2lem2
- lgsdir2lem3
- lgsdir2lem4
- lgsdir2lem5
- lgsdir2
- lgsdirprm
- lgsdir
- lgsdilem2
- lgsdi
- lgsne0
- lgsabs1
- lgssq
- lgssq2
- lgsprme0
- 1lgs
- lgs1
- lgsmodeq
- lgsmulsqcoprm
- lgsdirnn0
- lgsdinn0
- lgsqrlem1
- lgsqrlem2
- lgsqrlem3
- lgsqrlem4
- lgsqrlem5
- lgsqr
- lgsqrmod
- lgsqrmodndvds
- lgsdchrval
- lgsdchr
- Gauss' Lemma
- gausslemma2dlem0a
- gausslemma2dlem0b
- gausslemma2dlem0c
- gausslemma2dlem0d
- gausslemma2dlem0e
- gausslemma2dlem0f
- gausslemma2dlem0g
- gausslemma2dlem0h
- gausslemma2dlem0i
- gausslemma2dlem1a
- gausslemma2dlem1
- gausslemma2dlem2
- gausslemma2dlem3
- gausslemma2dlem4
- gausslemma2dlem5a
- gausslemma2dlem5
- gausslemma2dlem6
- gausslemma2dlem7
- gausslemma2d
- Quadratic reciprocity
- lgseisenlem1
- lgseisenlem2
- lgseisenlem3
- lgseisenlem4
- lgseisen
- lgsquadlem1
- lgsquadlem2
- lgsquadlem3
- lgsquad
- lgsquad2lem1
- lgsquad2lem2
- lgsquad2
- lgsquad3
- m1lgs
- 2lgslem1a1
- 2lgslem1a2
- 2lgslem1a
- 2lgslem1b
- 2lgslem1c
- 2lgslem1
- 2lgslem2
- 2lgslem3a
- 2lgslem3b
- 2lgslem3c
- 2lgslem3d
- 2lgslem3a1
- 2lgslem3b1
- 2lgslem3c1
- 2lgslem3d1
- 2lgslem3
- 2lgs2
- 2lgslem4
- 2lgs
- 2lgsoddprmlem1
- 2lgsoddprmlem2
- 2lgsoddprmlem3a
- 2lgsoddprmlem3b
- 2lgsoddprmlem3c
- 2lgsoddprmlem3d
- 2lgsoddprmlem3
- 2lgsoddprmlem4
- 2lgsoddprm
- All primes 4n+1 are the sum of two squares
- 2sqlem1
- 2sqlem2
- mul2sq
- 2sqlem3
- 2sqlem4
- 2sqlem5
- 2sqlem6
- 2sqlem7
- 2sqlem8a
- 2sqlem8
- 2sqlem9
- 2sqlem10
- 2sqlem11
- 2sq
- 2sqblem
- 2sqb
- 2sq2
- 2sqn0
- 2sqcoprm
- 2sqmod
- 2sqmo
- 2sqnn0
- 2sqnn
- addsq2reu
- addsqn2reu
- addsqrexnreu
- addsqnreup
- addsq2nreurex
- addsqn2reurex2
- 2sqreulem1
- 2sqreultlem
- 2sqreultblem
- 2sqreunnlem1
- 2sqreunnltlem
- 2sqreunnltblem
- 2sqreulem2
- 2sqreulem3
- 2sqreulem4
- 2sqreunnlem2
- 2sqreu
- 2sqreunn
- 2sqreult
- 2sqreultb
- 2sqreunnlt
- 2sqreunnltb
- 2sqreuop
- 2sqreuopnn
- 2sqreuoplt
- 2sqreuopltb
- 2sqreuopnnlt
- 2sqreuopnnltb
- 2sqreuopb
- Chebyshev's Weak Prime Number Theorem, Dirichlet's Theorem
- chebbnd1lem1
- chebbnd1lem2
- chebbnd1lem3
- chebbnd1
- chtppilimlem1
- chtppilimlem2
- chtppilim
- chto1ub
- chebbnd2
- chto1lb
- chpchtlim
- chpo1ub
- chpo1ubb
- vmadivsum
- vmadivsumb
- rplogsumlem1
- rplogsumlem2
- dchrisum0lem1a
- rpvmasumlem
- dchrisumlema
- dchrisumlem1
- dchrisumlem2
- dchrisumlem3
- dchrisum
- dchrmusumlema
- dchrmusum2
- dchrvmasumlem1
- dchrvmasum2lem
- dchrvmasum2if
- dchrvmasumlem2
- dchrvmasumlem3
- dchrvmasumlema
- dchrvmasumiflem1
- dchrvmasumiflem2
- dchrvmasumif
- dchrvmaeq0
- dchrisum0fval
- dchrisum0fmul
- dchrisum0ff
- dchrisum0flblem1
- dchrisum0flblem2
- dchrisum0flb
- dchrisum0fno1
- rpvmasum2
- dchrisum0re
- dchrisum0lema
- dchrisum0lem1b
- dchrisum0lem1
- dchrisum0lem2a
- dchrisum0lem2
- dchrisum0lem3
- dchrisum0
- dchrisumn0
- dchrmusumlem
- dchrvmasumlem
- dchrmusum
- dchrvmasum
- rpvmasum
- rplogsum
- dirith2
- dirith
- The Prime Number Theorem
- mudivsum
- mulogsumlem
- mulogsum
- logdivsum
- mulog2sumlem1
- mulog2sumlem2
- mulog2sumlem3
- mulog2sum
- vmalogdivsum2
- vmalogdivsum
- 2vmadivsumlem
- 2vmadivsum
- logsqvma
- logsqvma2
- log2sumbnd
- selberglem1
- selberglem2
- selberglem3
- selberg
- selbergb
- selberg2lem
- selberg2
- selberg2b
- chpdifbndlem1
- chpdifbndlem2
- chpdifbnd
- logdivbnd
- selberg3lem1
- selberg3lem2
- selberg3
- selberg4lem1
- selberg4
- pntrval
- pntrf
- pntrmax
- pntrsumo1
- pntrsumbnd
- pntrsumbnd2
- selbergr
- selberg3r
- selberg4r
- selberg34r
- pntsval
- pntsf
- selbergs
- selbergsb
- pntsval2
- pntrlog2bndlem1
- pntrlog2bndlem2
- pntrlog2bndlem3
- pntrlog2bndlem4
- pntrlog2bndlem5
- pntrlog2bndlem6a
- pntrlog2bndlem6
- pntrlog2bnd
- pntpbnd1a
- pntpbnd1
- pntpbnd2
- pntpbnd
- pntibndlem1
- pntibndlem2a
- pntibndlem2
- pntibndlem3
- pntibnd
- pntlemd
- pntlemc
- pntlema
- pntlemb
- pntlemg
- pntlemh
- pntlemn
- pntlemq
- pntlemr
- pntlemj
- pntlemi
- pntlemf
- pntlemk
- pntlemo
- pntleme
- pntlem3
- pntlemp
- pntleml
- pnt3
- pnt2
- pnt
- Ostrowski's theorem
- abvcxp
- padicfval
- padicval
- ostth2lem1
- qrngbas
- qdrng
- qrng0
- qrng1
- qrngneg
- qrngdiv
- qabvle
- qabvexp
- ostthlem1
- ostthlem2
- qabsabv
- padicabv
- padicabvf
- padicabvcxp
- ostth1
- ostth2lem2
- ostth2lem3
- ostth2lem4
- ostth2
- ostth3
- ostth