Metamath Proof Explorer


Table of Contents - 1.5. Predicate calculus with equality: Auxiliary axiom schemes (4 schemes)

In this section we introduce four additional schemes ax-10, ax-11, ax-12, and ax-13 that are not part of Tarski's system but can be proved (outside of Metamath) as theorem schemes of Tarski's system. These are needed to give our system the property of "scheme completeness", which means that we can prove (with Metamath) all possible theorem schemes expressible in our language of wff metavariables ranging over object-language wffs, and setvar variables ranging over object-language individual variables.

To show that these schemes are valid metatheorems of Tarski's system S2, above we proved from Tarski's system theorems ax10w, ax11w, ax12w, and ax13w, which show that any object-language instance of these schemes (emulated by having no wff metavariables and requiring all setvar variables to be mutually distinct) can be proved using only the schemes in Tarski's system S2.

An open problem is to show that these four additional schemes are mutually metalogically independent and metalogically independent from Tarski's. So far, independence of ax-12 from all others has been shown, and independence of Tarski's ax-6 from all others has been shown; see items 9a and 11 on https://us.metamath.org/award2003.html.

  1. Axiom scheme ax-10 (Quantified Negation)
    1. ax-10
    2. hbn1
    3. hbe1
    4. hbe1a
    5. nf5-1
    6. nf5i
    7. nf5dh
    8. nf5dv
    9. nfnaew
    10. nfnaewOLD
    11. nfe1
    12. nfa1
    13. nfna1
    14. nfia1
    15. nfnf1
    16. modal5
    17. nfs1v
  2. Axiom scheme ax-11 (Quantifier Commutation)
    1. ax-11
    2. alcoms
    3. alcom
    4. alrot3
    5. alrot4
    6. sbal
    7. sbalv
    8. sbcom2
    9. excom
    10. excomim
    11. excom13
    12. exrot3
    13. exrot4
    14. hbal
    15. hbald
    16. hbsbw
    17. nfa2
  3. Axiom scheme ax-12 (Substitution)
    1. ax-12
    2. ax12v
    3. ax12v2
    4. 19.8a
    5. 19.8ad
    6. sp
    7. spi
    8. sps
    9. 2sp
    10. spsd
    11. 19.2g
    12. 19.21bi
    13. 19.21bbi
    14. 19.23bi
    15. nexr
    16. qexmid
    17. nf5r
    18. nf5ri
    19. nf5rd
    20. spimedv
    21. spimefv
    22. nfim1
    23. nfan1
    24. 19.3t
    25. 19.3
    26. 19.9d
    27. 19.9t
    28. 19.9
    29. 19.21t
    30. 19.21
    31. stdpc5
    32. 19.21-2
    33. 19.23t
    34. 19.23
    35. alimd
    36. alrimi
    37. alrimdd
    38. alrimd
    39. eximd
    40. exlimi
    41. exlimd
    42. exlimimdd
    43. exlimdd
    44. nexd
    45. albid
    46. exbid
    47. nfbidf
    48. 19.16
    49. 19.17
    50. 19.27
    51. 19.28
    52. 19.19
    53. 19.36
    54. 19.36i
    55. 19.37
    56. 19.32
    57. 19.31
    58. 19.41
    59. 19.42
    60. 19.44
    61. 19.45
    62. spimfv
    63. chvarfv
    64. cbv3v2
    65. sbalex
    66. sb4av
    67. sbimd
    68. sbbid
    69. 2sbbid
    70. sbequ1
    71. sbequ2
    72. sbequ2OLD
    73. stdpc7
    74. sbequ12
    75. sbequ12r
    76. sbelx
    77. sbequ12a
    78. sbid
    79. sbcov
    80. sb6a
    81. sbid2vw
    82. axc16g
    83. axc16
    84. axc16gb
    85. axc16nf
    86. axc11v
    87. axc11rv
    88. drsb2
    89. equsalv
    90. equsexv
    91. equsexvOLD
    92. sbft
    93. sbf
    94. sbf2
    95. sbh
    96. hbs1
    97. nfs1f
    98. sb5
    99. sb5OLD
    100. sb56OLD
    101. equs5av
    102. 2sb5
    103. sbco4lem
    104. sbco4lemOLD
    105. sbco4
    106. dfsb7
    107. sbn
    108. sbex
    109. nf5
    110. nf6
    111. nf5d
    112. nf5di
    113. 19.9h
    114. 19.21h
    115. 19.23h
    116. exlimih
    117. exlimdh
    118. equsalhw
    119. equsexhv
    120. hba1
    121. hbnt
    122. hbn
    123. hbnd
    124. hbim1
    125. hbimd
    126. hbim
    127. hban
    128. hb3an
    129. sbi2
    130. sbim
    131. sbrim
    132. sbrimOLD
    133. sblim
    134. sbor
    135. sbbi
    136. sblbis
    137. sbrbis
    138. sbrbif
    139. sbiev
    140. sbiedw
    141. axc7
    142. axc7e
    143. modal-b
    144. 19.9ht
    145. axc4
    146. axc4i
    147. nfal
    148. nfex
    149. hbex
    150. nfnf
    151. 19.12
    152. nfald
    153. nfexd
    154. nfsbv
    155. nfsbvOLD
    156. hbsbwOLD
    157. sbco2v
    158. aaan
    159. aaanOLD
    160. eeor
    161. eeorOLD
    162. cbv3v
    163. cbv1v
    164. cbv2w
    165. cbvaldw
    166. cbvexdw
    167. cbv3hv
    168. cbvalv1
    169. cbvexv1
    170. cbval2v
    171. cbval2vOLD
    172. cbvex2v
    173. dvelimhw
    174. pm11.53
    175. 19.12vv
    176. eean
    177. eeanv
    178. eeeanv
    179. ee4anv
    180. sb8v
    181. sb8ev
    182. 2sb8ev
    183. sb6rfv
    184. sbnf2
    185. exsb
    186. 2exsb
    187. sbbib
    188. sbbibvv
    189. sbievg
    190. cleljustALT
    191. cleljustALT2
    192. equs5aALT
    193. equs5eALT
    194. axc11r
    195. dral1v
    196. dral1vOLD
    197. drex1v
    198. drnf1v
    199. drnf1vOLD
  4. Axiom scheme ax-13 (Quantified Equality)
    1. ax-13
    2. ax13v
    3. ax13lem1
    4. ax13
    5. ax13lem2
    6. nfeqf2
    7. dveeq2
    8. nfeqf1
    9. dveeq1
    10. nfeqf
    11. axc9
    12. ax6e
    13. ax6
    14. axc10
    15. spimt
    16. spim
    17. spimed
    18. spime
    19. spimv
    20. spimvALT
    21. spimev
    22. spv
    23. spei
    24. chvar
    25. chvarv
    26. cbv3
    27. cbval
    28. cbvex
    29. cbvalv
    30. cbvexv
    31. cbv1
    32. cbv2
    33. cbv3h
    34. cbv1h
    35. cbv2h
    36. cbvald
    37. cbvexd
    38. cbvaldva
    39. cbvexdva
    40. cbval2
    41. cbvex2
    42. cbval2vv
    43. cbvex2vv
    44. cbvex4v
    45. equs4
    46. equsal
    47. equsex
    48. equsexALT
    49. equsalh
    50. equsexh
    51. axc15
    52. ax12
    53. ax12b
    54. ax13ALT
    55. axc11n
    56. aecom
    57. aecoms
    58. naecoms
    59. axc11
    60. hbae
    61. hbnae
    62. nfae
    63. nfnae
    64. hbnaes
    65. axc16i
    66. axc16nfALT
    67. dral2
    68. dral1
    69. dral1ALT
    70. drex1
    71. drex2
    72. drnf1
    73. drnf2
    74. nfald2
    75. nfexd2
    76. exdistrf
    77. dvelimf
    78. dvelimdf
    79. dvelimh
    80. dvelim
    81. dvelimv
    82. dvelimnf
    83. dveeq2ALT
    84. equvini
    85. equvel
    86. equs5a
    87. equs5e
    88. equs45f
    89. equs5
    90. dveel1
    91. dveel2
    92. axc14
    93. sb6x
    94. sbequ5
    95. sbequ6
    96. sb5rf
    97. sb6rf
    98. ax12vALT
    99. 2ax6elem
    100. 2ax6e
    101. 2sb5rf
    102. 2sb6rf
    103. sbel2x
    104. sb4b
    105. sb4bOLD
    106. sb3b
    107. sb3
    108. sb1
    109. sb2
    110. sb3OLD
    111. sb1OLD
    112. sb3bOLD
    113. sb4a
    114. dfsb1
    115. hbsb2
    116. nfsb2
    117. hbsb2a
    118. sb4e
    119. hbsb2e
    120. hbsb3
    121. nfs1
    122. axc16ALT
    123. axc16gALT
    124. equsb1
    125. equsb2
    126. dfsb2
    127. dfsb3
    128. drsb1
    129. sb2ae
    130. sb6f
    131. sb5f
    132. nfsb4t
    133. nfsb4
    134. sbequ8
    135. sbie
    136. sbied
    137. sbiedv
    138. 2sbiev
    139. sbcom3
    140. sbco
    141. sbid2
    142. sbid2v
    143. sbidm
    144. sbco2
    145. sbco2d
    146. sbco3
    147. sbcom
    148. sbtrt
    149. sbtr
    150. sb8
    151. sb8e
    152. sb9
    153. sb9i
    154. sbhb
    155. nfsbd
    156. nfsb
    157. nfsbOLD
    158. hbsb
    159. sb7f
    160. sb7h
    161. sb10f
    162. sbal1
    163. sbal2
    164. 2sb8e