Metamath Proof Explorer
Table of Contents - 15.6. Subsystems of surreals
- Ordinal numbers
- cons
- df-ons
- elons
- onssno
- onsno
- 0ons
- 1ons
- elons2
- elons2d
- sltonold
- sltonex
- onscutleft
- onaddscl
- onmulscl
- peano2ons
- Surreal recursive sequences
- cseqs
- df-seqs
- seqsex
- seqseq123d
- nfseqs
- seqsval
- noseqex
- noseq0
- noseqp1
- noseqind
- noseqinds
- noseqssno
- noseqno
- om2noseq0
- om2noseqsuc
- om2noseqfo
- om2noseqlt
- om2noseqlt2
- om2noseqf1o
- om2noseqiso
- om2noseqoi
- om2noseqrdg
- noseqrdglem
- noseqrdgfn
- noseqrdg0
- noseqrdgsuc
- seqsfn
- seqs1
- seqsp1
- Natural numbers
- cnn0s
- cnns
- df-n0s
- df-nns
- n0sex
- nnsex
- peano5n0s
- n0ssno
- nnssn0s
- nnssno
- n0sno
- nnsno
- n0snod
- nnsnod
- nnn0s
- nnn0sd
- 0n0s
- peano2n0s
- dfn0s2
- n0sind
- n0scut
- n0ons
- nnne0s
- n0sge0
- nnsgt0
- elnns
- elnns2
- n0s0suc
- nnsge1
- n0addscl
- n0mulscl
- nnaddscl
- nnmulscl
- 1n0s
- 1nns
- peano2nns
- n0sbday
- n0ssold
- nnsrecgt0d
- seqn0sfn
- eln0s
- n0s0m1
- n0subs
- n0p1nns
- dfnns2
- nnsind
- Integers
- czs
- df-zs
- zsex
- zssno
- zno
- znod
- elzs
- nnzsubs
- nnzs
- nnzsd
- 0zs
- n0zs
- n0zsd
- 1zs
- znegscl
- znegscld
- zaddscl
- zaddscld
- zsubscld
- zmulscld
- elzn0s
- elzs2
- eln0zs
- elnnzs
- elznns
- zn0subs
- peano5uzs
- uzsind
- zsbday
- zscut
- Dyadic fractions
- c2s
- df-2s
- cexps
- df-exps
- czs12
- df-zs12
- 1p1e2s
- no2times
- 2nns
- 2sno
- 2ne0s
- n0seo
- zseo
- nohalf
- expsval
- expsnnval
- exps0
- exps1
- expsp1
- expscl
- expsne0
- expsgt0
- halfcut
- cutpw2
- pw2bday
- addhalfcut
- pw2cut
- elzs12
- zs12ex
- zzs12
- zs12bday
- Real numbers
- creno
- df-reno
- elreno
- recut
- 0reno
- renegscl
- readdscl
- remulscllem1
- remulscllem2
- remulscl